1
|
Jones KR, Becker MH, Walke JB, Belden LK. Natural recolonization of the amphibian skin bacterial community following disruption by antibiotics. Proc Biol Sci 2025; 292:20250855. [PMID: 40527462 DOI: 10.1098/rspb.2025.0855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 06/19/2025] Open
Abstract
Despite the ubiquity of microbial communities, we lack a thorough understanding of how host-associated communities respond to disturbances. We explored the response of the skin bacterial communities of Notophthalmus viridescens (eastern, red-spotted newts) to disturbance by exposing newts to antibiotics, returning them to pond enclosures and assessing bacterial community composition through periodic skin swabs over 28 days. Through 16S rRNA gene amplicon sequencing and qPCR, we observed immediate shifts in bacterial abundance and community composition following antibiotic exposure. Bacterial communities recovered compositionally by the experiment's conclusion; however, bacterial abundance did not recover to pre-exposure levels. Additionally, community composition on all newts shifted over the course of the experiment. Our results provide evidence for lasting consequences of disturbance on bacterial communities, highlight the potential disconnect between recovery in terms of community structure and bacterial abundance and emphasize the importance of incorporating natural community shifts into evaluations of community recovery.
Collapse
Affiliation(s)
- Korin Rex Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Biology & Chemistry, Liberty University, Lynchburg, VA, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Biology, Eastern Washington University, Cheney, WA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Stevens EJ, Li JD, Hector TE, Drew GC, Hoang K, Greenrod STE, Paterson S, King KC. Within-host competition causes pathogen molecular evolution and perpetual microbiota dysbiosis. THE ISME JOURNAL 2025; 19:wraf071. [PMID: 40244062 PMCID: PMC12066030 DOI: 10.1093/ismejo/wraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Pathogens newly invading a host must compete with resident microbiota. This within-host microbial warfare could lead to more severe disease outcomes or constrain the evolution of virulence. By passaging a widespread pathogen (Staphylococcus aureus) and a natural microbiota community across populations of nematode hosts, we show that the pathogen displaced microbiota and reduced species richness, but maintained its virulence across generations. Conversely, pathogen populations and microbiota passaged in isolation caused more host harm relative to their respective no-host controls. For the evolved pathogens, this increase in virulence was partly mediated by enhanced biofilm formation and expression of the global virulence regulator agr. Whole genome sequencing revealed shifts in the mode of selection from directional (on pathogens evolving in isolation) to fluctuating (on pathogens evolving in host microbiota). This approach also revealed that competitive interactions with the microbiota drove early pathogen genomic diversification. Metagenome sequencing of the passaged microbiota shows that evolution in pathogen-infected hosts caused a significant reduction in community stability (dysbiosis), along with restrictions on the co-existence of some species based on nutrient competition. Our study reveals how microbial competition during novel infection could determine the patterns and processes of evolution with major consequences for host health.
Collapse
Affiliation(s)
- Emily J Stevens
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jingdi D Li
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Tobias E Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Georgia C Drew
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Kim Hoang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Samuel T E Greenrod
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, Wirral, CH64 7TE, United Kingdom
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Sun D, Herath J, Zhou S, Ellepola G, Meegaskumbura M. Associations of Batrachochytrium dendrobatidis with skin bacteria and fungi on Asian amphibian hosts. ISME COMMUNICATIONS 2023; 3:123. [PMID: 37993728 PMCID: PMC10665332 DOI: 10.1038/s43705-023-00332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Amphibian skin harbors microorganisms that are associated with the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, one of the most significant wildlife diseases known. This pathogen originated in Asia, where diverse Bd lineages exist; hence, native amphibian hosts have co-existed with Bd over long time periods. Determining the nuances of this co-existence is crucial for understanding the prevalence and spread of Bd from a microbial context. However, associations of Bd with the natural skin microbiome remain poorly understood for Asian hosts, especially in relation to skin-associated fungi. We used 16 S rRNA and fungal internal transcribed spacer (ITS) gene sequencing to characterize the skin microbiome of four native Asian amphibian species and examined the relationships between Bd infection and their skin bacterial and fungal communities; we also analyzed the correlates of the putative anti-Bd bacteria. We show that both skin bacterial and fungal community structure and composition had significant associations with infection status (Bd presence/absence) and infection intensity (frequency of Bd sequence reads). We also found that the putative anti-Bd bacterial richness was correlated with Bd infection status and infection intensity, and observed that the relative abundance of anti-Bd bacteria roughly correspond with changes in both Bd prevalence and mean infection intensity in populations. Additionally, the microbial co-occurrence network of infected frogs was significantly different from that of uninfected frogs that were characterized by more keystone nodes (connectors) and larger proportions in correlations between bacteria, suggesting stronger inter-module bacterial interactions. These results indicate that the mutual effects between Bd and skin-associated microbiome, including the interplay between bacteria and fungi, might vary with Bd infection in susceptible amphibian species. This knowledge will help in understanding the dynamics of Bd from a microbial perspective, potentially contributing to mitigate chytridiomycosis in other regions of the world.
Collapse
Affiliation(s)
- Dan Sun
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No 704 Negombo Rd, Welisara, 71722, Sri Lanka
| | - Shipeng Zhou
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Gajaba Ellepola
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, KY20400, Sri Lanka
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
| |
Collapse
|
6
|
Fieschi-Méric L, van Leeuwen P, Denoël M, Lesbarrères D. Encouraging news for in situ conservation: Translocation of salamander larvae has limited impacts on their skin microbiota. Mol Ecol 2023. [PMID: 36872055 DOI: 10.1111/mec.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The key role of symbiotic skin bacteria communities in amphibian resistance to emerging pathogens is well recognized, but factors leading to their dysbiosis are not fully understood. In particular, the potential effects of population translocations on the composition and diversity of hosts' skin microbiota have received little attention, although such transfers are widely carried out as a strategy for amphibian conservation. To characterize the potential reorganization of the microbiota over such a sudden environmental change, we conducted a common-garden experiment simulating reciprocal translocations of yellow-spotted salamander larvae across three lakes. We sequenced skin microbiota samples collected before and 15 days after the transfer. Using a database of antifungal isolates, we identified symbionts with known function against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian declines. Our results indicate an important reorganization of bacterial assemblages throughout ontogeny, with strong changes in composition, diversity and structure of the skin microbiota in both control and translocated individuals over the 15 days of monitoring. Unexpectedly, the diversity and community structure of the microbiota were not significantly affected by the translocation event, thus suggesting a strong resilience of skin bacterial communities to environmental change-at least across the time-window studied here. A few phylotypes were more abundant in the microbiota of translocated larvae, but no differences were found among pathogen-inhibiting symbionts. Taken together, our results support amphibian translocations as a promising strategy for this endangered animal class, with limited impact on their skin microbiota.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, Ontario, Canada
| | - Pauline van Leeuwen
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Conservation Genetics Laboratory, University de Liège, Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Cevallos MA, Basanta MD, Bello-López E, Escobedo-Muñoz AS, González-Serrano FM, Nemec A, Romero-Contreras YJ, Serrano M, Rebollar EA. Genomic characterization of antifungal Acinetobacter bacteria isolated from the skin of the frogs Agalychnis callidryas and Craugastor fitzingeri. FEMS Microbiol Ecol 2022; 98:6775075. [PMID: 36288213 DOI: 10.1093/femsec/fiac126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023] Open
Abstract
Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.
Collapse
Affiliation(s)
- M A Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M D Basanta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México.,Department of Biology, University of Nevada Reno, 1664 N Virgina St, Reno, NV 89557, United States
| | - E Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A S Escobedo-Muñoz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - A Nemec
- Laboratory of Bacterial Genetics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, 100 00 Prague 10, Czechia.,Department of Medical Microbiology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czechia
| | - Y J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - M Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca, Morelos, 62220, México
| |
Collapse
|
8
|
Le Sage EH, Ohmer MEB, LaBumbard BC, Altman KA, Reinert LK, Bednark JG, Bletz MC, Inman B, Lindauer A, McDonnell NB, Parker SK, Skerlec SM, Wantman T, Rollins‐Smith LA, Woodhams DC, Voyles J, Richards‐Zawacki CL. Localized carry‐over effects of pond drying on survival, growth, and pathogen defenses in amphibians. Ecosphere 2022. [DOI: 10.1002/ecs2.4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Michel E. B. Ohmer
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | | | - Karie A. Altman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Laura K. Reinert
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Jeffery G. Bednark
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Molly C. Bletz
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Brady Inman
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Alexa Lindauer
- Department of Biology University of Nevada Reno Nevada USA
| | - Nina B. McDonnell
- Department of Biology University of Massachusetts Boston Massachusetts USA
| | - Sadie K. Parker
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Samantha M. Skerlec
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Trina Wantman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Louise A. Rollins‐Smith
- Department of Pathology, Microbiology and Immunology Vanderbilt University School of Medicine Nashville Tennessee USA
- Department of Biological Sciences Vanderbilt University Nashville Tennessee USA
- Department of Pediatrics Vanderbilt University School of Medicine Nashville Tennessee USA
| | | | - Jamie Voyles
- Department of Biology University of Nevada Reno Nevada USA
| | | |
Collapse
|
9
|
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. The interplay of fungal and bacterial microbiomes on rainforest frogs following a disease outbreak. Ecosphere 2022. [DOI: 10.1002/ecs2.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Donald T. McKnight
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Roger Huerlimann
- College of Science and Engineering James Cook University Townsville Queensland Australia
- Marine Climate Change Unit Okinawa Institute of Science and Technology Onnason Okinawa Japan
| | - Deborah S. Bower
- College of Science and Engineering James Cook University Townsville Queensland Australia
- School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| | - Lin Schwarzkopf
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Ross A. Alford
- College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Kyall R. Zenger
- College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
10
|
Basanta MD, Rebollar EA, García-Castillo MG, Parra Olea G. Comparative Analysis of Skin Bacterial Diversity and Its Potential Antifungal Function Between Desert and Pine Forest Populations of Boreal Toads Anaxyrus boreas. MICROBIAL ECOLOGY 2022; 84:257-266. [PMID: 34427721 DOI: 10.1007/s00248-021-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Universidad Veracruzana, Amatlán de Los Reyes, Veracruz, México
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
11
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
12
|
Bates KA, Sommer U, Hopkins KP, Shelton JMG, Wierzbicki C, Sergeant C, Tapley B, Michaels CJ, Schmeller DS, Loyau A, Bosch J, Viant MR, Harrison XA, Garner TWJ, Fisher MC. Microbiome function predicts amphibian chytridiomycosis disease dynamics. MICROBIOME 2022; 10:44. [PMID: 35272699 PMCID: PMC8908643 DOI: 10.1186/s40168-021-01215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Jennifer M G Shelton
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Claudia Wierzbicki
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Christopher Sergeant
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Benjamin Tapley
- ZSL London Zoo, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | | | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Adeline Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Jaime Bosch
- IMIB Biodiversity Research Institute (CSIC-University of Oviedo), 33600, Mieres, Spain
| | - Mark R Viant
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4DQ, UK
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Matthew C Fisher
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
13
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
14
|
Becker MH, Brophy JAN, Barrett K, Bronikowski E, Evans M, Glassey E, Kaganer AW, Klocke B, Lassiter E, Meyer AJ, Muletz-Wolz CR, Fleischer RC, Voigt CA, Gratwicke B. Genetically modifying skin microbe to produce violacein and augmenting microbiome did not defend Panamanian golden frogs from disease. ISME COMMUNICATIONS 2021; 1:57. [PMID: 37938636 PMCID: PMC9723765 DOI: 10.1038/s43705-021-00044-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 04/21/2023]
Abstract
We designed two probiotic treatments to control chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) on infected Panamanian golden frogs (Atelopus zeteki), a species that is thought to be extinct in the wild due to Bd. The first approach disrupted the existing skin microbe community with antibiotics then exposed the frogs to a core golden frog skin microbe (Diaphorobacter sp.) that we genetically modified to produce high titers of violacein, a known antifungal compound. One day following probiotic treatment, the engineered Diaphorobacter and the violacein-producing pathway could be detected on the frogs but the treatment failed to improve frog survival when exposed to Bd. The second approach exposed frogs to the genetically modified bacterium mixed into a consortium with six other known anti-Bd bacteria isolated from captive A. zeteki, with no preliminary antibiotic treatment. The consortium treatment increased the frequency and abundance of three probiotic isolates (Janthinobacterium, Chryseobacterium, and Stenotrophomonas) and these persisted on the skin 4 weeks after probiotic treatment. There was a temporary increase in the frequency and abundance of three other probiotics isolates (Masillia, Serratia, and Pseudomonas) and the engineered Diaphorobacter isolate, but they subsequently disappeared from the skin. This treatment also failed to reduce frog mortality upon exposure.
Collapse
Affiliation(s)
- Matthew H Becker
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
- Liberty University Department of Biology and Chemistry, Lynchburg, VA, USA
| | - Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ed Bronikowski
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Matthew Evans
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa W Kaganer
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
| | - Blake Klocke
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Elliot Lassiter
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Adam J Meyer
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carly R Muletz-Wolz
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genetics, Washington, DC, 20001, USA
| | - Robert C Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genetics, Washington, DC, 20001, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA.
| |
Collapse
|
15
|
Nava-González B, Suazo-Ortuño I, López PB, Maldonado-López Y, Lopez-Toledo L, Raggi L, Parra-Olea G, Alvarado-Díaz J, Gómez-Gil B. Inhibition of Batrachochytrium dendrobatidis Infection by Skin Bacterial Communities in Wild Amphibian Populations. MICROBIAL ECOLOGY 2021; 82:666-676. [PMID: 33598748 DOI: 10.1007/s00248-021-01706-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Skin-associated bacteria are known to inhibit infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibians. It has also been postulated that skin-associated bacterial community is related to Bd infection intensity. However, our understanding of host microbial dynamics and their importance in regulating Bd intensity is limited. We analyzed Bd infection and skin-associated bacteria from two amphibian species, the salamander Ambystoma rivulare and the frog Lithobates spectabilis that co-occurred in a tropical high-altitude site in central Mexico. Sixty-three percent of sampled salamander individuals and 80% of frog individuals tested positive for Bd. Overall, we registered 622 skin-associated bacterial genera, from which 73 are known to have Bd inhibitory effects. These inhibitory taxa represented a relative abundance of 50% in relation to total relative bacterial abundance. Our results indicated that, although sharing some bacterial taxa, bacterial community from the skin of both species was different in taxonomic composition and in relative abundance. Pseudomonas spp. and Stenotrophomonas spp. were among the five most abundant bacterial taxa of both species. Both bacterial taxa inhibit Bd infection. We detected that bacterial richness and relative abundance of inhibitory Bd bacteria were negatively related to intensity of Bd infection independent of species and seasons. Despite the high Bd prevalence in both host species, no dead or sick individuals were registered during field surveys. The relatively low levels of Bd load apparently do not compromise survival of host species. Therefore, our results suggested that individuals analyzed were able to survive and thrive under a dynamic relation with enzootic infections of Bd and their microbiota.
Collapse
Affiliation(s)
- Bisbrian Nava-González
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México.
| | - Perla Bibian López
- Universidad Tecnológica de Morelia, Avenida Vicepresidente Pino Suárez 750, Cd. Industrial, 58200, Morelia, Michoacán, México
| | - Yurixhi Maldonado-López
- CONACyT-Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Leonel Lopez-Toledo
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Luciana Raggi
- CONACYT-Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Cd de México, México
| | - Javier Alvarado-Díaz
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Bruno Gómez-Gil
- CIAD A.C., Mazatlán Unit for Aquaculture, AP 711, Mazatlán, 82000, Sinaloa, México
| |
Collapse
|
16
|
Ellison S, Knapp R, Vredenburg V. Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California. ISME COMMUNICATIONS 2021; 1:45. [PMID: 37938625 PMCID: PMC9723788 DOI: 10.1038/s43705-021-00047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 05/29/2023]
Abstract
The amphibian skin microbiome has been the focus of numerous studies because of the protective effects that some bacteria provide against the pathogenic fungus Batrachochytrium dendrobatidis, which has caused a global panzootic among amphibians. However, the mechanisms driving community structure and function in the amphibian skin microbiome are still poorly understood, and longitudinal analyses of the skin microbiome have not yet been conducted in wild populations. In this study, we investigate longitudinal patterns in the skin microbiome of 19 individually marked adult frogs from two wild populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae), sampled over the course of 2 years. We found that individuals with low bacterial diversity (dominated by order Burkhorderiales) had significantly more stable bacterial communities than those with higher diversity. Amplicon sequence variants (ASVs) with high relative abundance were significantly less transient than those with low relative abundance, and ASVs with intermediate-level relative abundances experienced the greatest volatility over time. Based on these results, we suggest that efforts to develop probiotic treatments to combat B. dendrobatidis should focus on bacteria that are found at high relative abundances in some members of a population, as these strains are more likely to persist and remain stable in the long term.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, San Francisco, California, USA.
| | - Roland Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
| | - Vance Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| |
Collapse
|
17
|
Abstract
Animals live in symbiosis with numerous microbe species. While some can protect hosts from infection and benefit host health, components of the microbiota or changes to the microbial landscape have the potential to facilitate infections and worsen disease severity. Pathogens and pathobionts can exploit microbiota metabolites, or can take advantage of a depletion in host defences and changing conditions within a host, to cause opportunistic infection. The microbiota might also favour a more virulent evolutionary trajectory for invading pathogens. In this review, we consider the ways in which a host microbiota contributes to infectious disease throughout the host's life and potentially across evolutionary time. We further discuss the implications of these negative outcomes for microbiota manipulation and engineering in disease management.
Collapse
Affiliation(s)
- Emily J. Stevens
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Medina D, Greenspan SE, Carvalho T, Becker CG, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol 2021; 97:6134751. [PMID: 33580951 DOI: 10.1093/femsec/fiab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.
Collapse
Affiliation(s)
- Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil.,Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Winter is coming-Temperature affects immune defenses and susceptibility to Batrachochytrium salamandrivorans. PLoS Pathog 2021; 17:e1009234. [PMID: 33600433 PMCID: PMC7891748 DOI: 10.1371/journal.ppat.1009234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental temperature is a key factor driving various biological processes, including immune defenses and host-pathogen interactions. Here, we evaluated the effects of environmental temperature on the pathogenicity of the emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), using controlled laboratory experiments, and measured components of host immune defense to identify regulating mechanisms. We found that adult and juvenile Notophthalmus viridescens died faster due to Bsal chytridiomycosis at 14°C than at 6 and 22°C. Pathogen replication rates, total available proteins on the skin, and microbiome composition likely drove these relationships. Temperature-dependent skin microbiome composition in our laboratory experiments matched seasonal trends in wild N. viridescens, adding validity to these results. We also found that hydrophobic peptide production after two months post-exposure to Bsal was reduced in infected animals compared to controls, perhaps due to peptide release earlier in infection or impaired granular gland function in diseased animals. Using our temperature-dependent susceptibility results, we performed a geographic analysis that revealed N. viridescens populations in the northeastern United States and southeastern Canada are at greatest risk for Bsal invasion, which shifted risk north compared to previous assessments. Our results indicate that environmental temperature will play a key role in the epidemiology of Bsal and provide evidence that temperature manipulations may be a viable disease management strategy. In 2010, a new skin-eating fungus, Batrachochytrium salamandrivorans (Bsal), was discovered killing salamanders in the Netherlands. Since then, the pathogen has spread to other European countries. Bsal is believed to be from Asia and is being translocated through the international trade of amphibians. To our knowledge, Bsal has not arrived to North America. As a proactive strategy for disease control, we evaluated how a range of environmental temperatures in North America could affect invasion risk of Bsal into a widely distributed salamander species, the eastern newt (Notophthalmus viridescens). Our results show that northeastern USA, southeastern Canada, and the higher elevations of the Appalachian Mountains have the greatest likelihood of Bsal invasion, when temperature-dependent susceptibility is included in risk analyses. Changes in eastern newt susceptibility to Bsal infection associated with temperature are likely an interaction between pathogen replication rate and host immune defenses, including changes in skin microbiome composition and the host’s ability to produce Bsal-killing proteins on the skin. Our study provides new insights into how latitude, elevation and season can impact the epidemiology of Bsal, and suggests that strategies that manipulate microclimate of newt habitats could be useful in managing Bsal outbreaks and that climate change will impact Bsal invasion probability.
Collapse
|
20
|
Abarca JG, Whitfield SM, Zuniga-Chaves I, Alvarado G, Kerby J, Murillo-Cruz C, Pinto-Tomás AA. Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica. MICROBIOLOGY-SGM 2021; 167. [PMID: 33529150 DOI: 10.1099/mic.0.001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amphibians have declined around the world in recent years, in parallel with the emergence of an epidermal disease called chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has been associated with mass mortality in amphibians worldwide, including in Costa Rica, and Bd is considered an important contributor to the disappearance of this group of vertebrates. While many species are susceptible to the disease, others show tolerance and manage to survive infection with the pathogen. We evaluated the pathogen Bd circulating in Costa Rica and the capacity of amphibian skin bacteria to inhibit the growth of the pathogen in vitro. We isolated and characterized - genetically and morphologically - several Bd isolates from areas with declining populations of amphibians. We determined that the circulating chytrid fungus in Costa Rica belongs to the virulent strain Bd-GPL-2, which has been related to massive amphibian deaths worldwide; however, the isolates obtained showed genetic and morphological variation. Furthermore, we isolated epidermal bacteria from 12 amphibian species of surviving populations, some in danger of extinction, and evaluated their inhibitory activity against the collection of chytrid isolates. Through bioassays we confirmed the presence of chytrid-inhibitory bacterial genera in Costa Rican amphibians. However, we observed that the inhibition varied between different isolates of the same bacterial genus, and each bacterial isolation inhibited fungal isolation differently. In total, 14 bacterial isolates belonging to the genera Stenotrophomonas, Streptomyces, Enterobacter, Pseudomonas and Klebsiella showed inhibitory activity against all Bd isolates. Given the observed variation both in the pathogen and in the bacterial inhibition capacity, it is highly relevant to include local isolates and to consider the origin of the microorganisms when performing in vivo infection tests aimed at developing and implementing mitigation strategies for chytridiomycosis.
Collapse
Affiliation(s)
- Juan G Abarca
- Laboratorio de Recursos Naturales y Vida Silvestre (LARNAVISI), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, Costa Rica
| | - Steven M Whitfield
- Conservation and Research Department, Zoo Miami, St, Miami, FL 33177, USA
| | - Ibrahim Zuniga-Chaves
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Gilbert Alvarado
- Laboratorio de Patología Experimental y Comparada (LAPECOM), Escuela de Biología, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Jacob Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
21
|
Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith LA. Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium infections in Southern leopard frogs. J Anim Ecol 2020; 90:542-554. [PMID: 33179786 DOI: 10.1111/1365-2656.13386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity. Over the course of a year, five populations of Southern leopard frogs (Rana [Lithobates] sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness of Bd growth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibit Bd growth in vitro were used as an estimate of predicted anti-Bd function of the skin microbiome. Batrachochytrium dendrobatidis dynamics followed the expected seasonal fluctuations-peaks in cooler months-which coincided with when host mucosal defences were most potent against Bd. Specifically, the concentration and expression of stored AMPs cycled synchronously with Bd dynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibit Bd growth was greatest when risk of Bd infection was highest. We interpret the increase in peptide storage in the fall and the shift to a more anti-Bd microbiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool-adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality of Bd in this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian T Miller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | | | - Doug C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
22
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
23
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
24
|
Harrison XA, Sewell T, Fisher M, Antwis RE. Designing Probiotic Therapies With Broad-Spectrum Activity Against a Wildlife Pathogen. Front Microbiol 2020; 10:3134. [PMID: 32038568 PMCID: PMC6987264 DOI: 10.3389/fmicb.2019.03134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022] Open
Abstract
Host-associated microbes form an important component of immunity that protect against infection by pathogens. Treating wild individuals with these protective microbes, known as probiotics, can reduce rates of infection and disease in both wild and captive settings. However, the utility of probiotics for tackling wildlife disease requires that they offer consistent protection across the broad genomic variation of the pathogen that hosts can encounter in natural settings. Here we develop multi-isolate probiotic consortia with the aim of effecting broad-spectrum inhibition of growth of the lethal amphibian pathogen Batrachochytrium dendrobatidis (Bd) when tested against nine Bd isolates from two distinct lineages. Though we achieved strong growth inhibition between 70 and 100% for seven Bd isolates, two isolates appeared consistently resistant to inhibition, irrespective of probiotic strategy employed. We found no evidence that genomic relatedness of the chytrid predicted similarity of inhibition scores, nor that increasing the genetic diversity of the bacterial consortia could offer stronger inhibition of pathogen growth, even for the two resistant isolates. Our findings have important consequences for the application of probiotics to mitigate wildlife diseases in the face of extensive pathogen genomic variation.
Collapse
Affiliation(s)
- Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Thomas Sewell
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
25
|
Kruger A. Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin. MICROBIAL ECOLOGY 2020; 79:231-240. [PMID: 31165187 DOI: 10.1007/s00248-019-01387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The cutaneous microbial community can influence the health of amphibians exposed to Batrachochytrium dendrobatidis (Bd), a fungal pathogen that has contributed to recent amphibian declines. Resistance to Bd in amphibian populations is correlated with the presence of anti-Bd cutaneous microbes, which confer disease resistance by inhibiting Bd growth. I aimed to determine if green frogs (Lithobates clamitans), an abundant and widely distributed species in New Jersey, harbored bacteria that inhibit Bd and whether the presence and identity of these microbes varied among sites. I used in vitro challenge assays to determine if bacteria isolated from green frog skin could inhibit or enhance the growth of Bd. I found that green frogs at all sites harbored anti-Bd bacteria. However, there were differences in Bd inhibition capabilities among bacterial isolates identified as the same operational taxonomic unit (OTU), lending support to the idea that phylogenetic relatedness does not always predict Bd inhibition status. Additionally, anti-Bd bacterial richness did not vary by site, but the composition of anti-Bd bacterial taxa was distinct at each site. This suggests that there is functional redundancy of Bd inhibition across unique communities of anti-Bd symbionts found on frogs at different sites. These findings highlight the need to better elucidate the structure-function relationship of microbiomes and their role in disease resistance.
Collapse
Affiliation(s)
- Ariel Kruger
- Graduate Program in Ecology and Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
26
|
Campbell LJ, Pawlik AH, Harrison XA. Amphibian ranaviruses in Europe: important directions for future research. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are an emerging group of pathogens capable of infecting all cold-blooded vertebrates. In Europe, ranaviruses pose a particularly potent threat to wild amphibian populations. Since the 1980s research on amphibian-infecting ranaviruses in Europe has been growing. The wide distribution of amphibian populations in Europe, the ease with which many are monitored, and the tractable nature of counterpart ex situ experimental systems have provided researchers with a unique opportunity to study many aspects of host–ranavirus interactions in the wild. These characteristics of European amphibian populations will also enable researchers to lead the way as the field of host–ranavirus interactions progresses. In this review, we provide a summary of the current key knowledge regarding amphibian infecting ranaviruses throughout Europe. We then outline important areas of further research and suggest practical ways each could be pursued. We address the study of potential interactions between the amphibian microbiome and ranaviruses, how pollution may exacerbate ranaviral disease either as direct stressors of amphibians or indirect modification of the amphibian microbiome. Finally, we discuss the need for continued surveillance of ranaviral emergence in the face of climate change.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Alice H. Pawlik
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
27
|
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol 2019; 10:2883. [PMID: 31956320 PMCID: PMC6951417 DOI: 10.3389/fmicb.2019.02883] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Variation among animals in their host-associated microbial communities is increasingly recognized as a key determinant of important life history traits including growth, metabolism, and resistance to disease. Quantitative estimates of the factors shaping the stability of host microbiomes over time at the individual level in non-model organisms are scarce. Addressing this gap in our knowledge is important, as variation among individuals in microbiome stability may represent temporal gain or loss of key microbial species and functions linked to host health and/or fitness. Here we use controlled experiments to investigate how both heterogeneity in microbial species richness of the environment and exposure to the emerging pathogen Ranavirus influence the structure and temporal dynamics of the skin microbiome in a vertebrate host, the European common frog (Rana temporaria). Our evidence suggests that altering the bacterial species richness of the environment drives divergent temporal microbiome dynamics of the amphibian skin. Exposure to ranavirus effects changes in skin microbiome structure irrespective of total microbial diversity, but individuals with higher pre-exposure skin microbiome diversity appeared to exhibit higher survival. Higher diversity skin microbiomes also appear less stable over time compared to lower diversity microbiomes, but stability of the 100 most abundant ("core") community members was similar irrespective of microbiome richness. Our study highlights the importance of extrinsic factors in determining the stability of host microbiomes over time, which may in turn have important consequences for the stability of host-microbe interactions and microbiome-fitness correlations.
Collapse
Affiliation(s)
- Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom
| | - Stephen J Price
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Chris Sergeant
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
28
|
Niederle MV, Bosch J, Ale CE, Nader-Macías ME, Aristimuño Ficoseco C, Toledo LF, Valenzuela-Sánchez A, Soto-Azat C, Pasteris SE. Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS One 2019; 14:e0223020. [PMID: 31560707 PMCID: PMC6764794 DOI: 10.1371/journal.pone.0223020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis and has been a key driver in the catastrophic decline of amphibians globally. While many strategies have been proposed to mitigate Bd outbreaks, few have been successful. In recent years, the use of probiotic formulations that protect an amphibian host by killing or inhibiting Bd have shown promise as an effective chytridiomycosis control strategy. The North American bullfrog (Lithobates catesbeianus) is a common carrier of Bd and harbours a diverse skin microbiota that includes lactic acid bacteria (LAB), a microbial group containing species classified as safe and conferring host benefits. We investigated beneficial/probiotic properties: anti-Bd activity, and adhesion and colonisation characteristics (hydrophobicity, biofilm formation and exopolysaccharide-EPS production) in two confirmed LAB (cLAB-Enterococcus gallinarum CRL 1826, Lactococcus garvieae CRL 1828) and 60 presumptive LAB (pLAB) [together named as LABs] isolated from bullfrog skin.We challenged LABs against eight genetically diverse Bd isolates and found that 32% of the LABs inhibited at least one Bd isolate with varying rates of inhibition. Thus, we established a score of sensitivity from highest (BdGPL AVS7) to lowest (BdGPL C2A) for the studied Bd isolates. We further reveal key factors underlying host adhesion and colonisation of LABs. Specifically, 90.3% of LABs exhibited hydrophilic properties that may promote adhesion to the cutaneous mucus, with the remaining isolates (9.7%) being hydrophobic in nature with a surface polarity compatible with colonisation of acidic, basic or both substrate types. We also found that 59.7% of LABs showed EPS synthesis and 66.1% produced biofilm at different levels: 21% weak, 29% moderate, and 16.1% strong. Together all these properties enhance colonisation of the host surface (mucus or epithelial cells) and may confer protective benefits against Bd through competitive exclusion. Correspondence analysis indicated that biofilm synthesis was LABs specific with high aggregating bacteria correlating with strong biofilm producers, and EPS producers being correlated to negative biofilm producing LABs. We performed Random Amplified Polymorphic DNA (RAPD)-PCR analysis and demonstrated a higher degree of genetic diversity among rod-shaped pLAB than cocci. Based on the LAB genetic analysis and specific probiotic selection criteria that involve beneficial properties, we sequenced 16 pLAB which were identified as Pediococcus pentosaceus, Enterococcus thailandicus, Lactobacillus pentosus/L. plantarum, L. brevis, and L. curvatus. Compatibility assays performed with cLAB and the 16 species described above indicate that all tested LAB can be included in a mixed probiotic formula. Based on our analyses, we suggest that E. gallinarum CRL 1826, L. garvieae CRL 1828, and P. pentosaceus 15 and 18B represent optimal probiotic candidates for Bd control and mitigation.
Collapse
Affiliation(s)
- M. V. Niederle
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - J. Bosch
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University—Campus Mieres, Spain
| | - C. E. Ale
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - M. E. Nader-Macías
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - C. Aristimuño Ficoseco
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - L. F. Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - A. Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Organización No Gubernamental (ONG) Ranita de Darwin, Santiago, Chile
- Organización No Gubernamental (ONG) Ranita de Darwin, Valdivia, Chile
| | - C. Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - S. E. Pasteris
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| |
Collapse
|
29
|
Bates KA, Shelton JMG, Mercier VL, Hopkins KP, Harrison XA, Petrovan SO, Fisher MC. Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Front Microbiol 2019; 10:1834. [PMID: 31507541 PMCID: PMC6716147 DOI: 10.3389/fmicb.2019.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Victoria L Mercier
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silviu O Petrovan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Froglife, Peterborough, United Kingdom
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Campbell LJ, Garner TWJ, Hopkins K, Griffiths AGF, Harrison XA. Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Front Microbiol 2019; 10:1245. [PMID: 31281291 PMCID: PMC6597677 DOI: 10.3389/fmicb.2019.01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.
Collapse
Affiliation(s)
- Lewis J Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
31
|
Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH. The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends Biotechnol 2019; 37:140-151. [DOI: 10.1016/j.tibtech.2018.11.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022]
|
32
|
Ellison S, Knapp RA, Sparagon W, Swei A, Vredenburg VT. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol Ecol 2018; 28:127-140. [PMID: 30506592 DOI: 10.1111/mec.14964] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow-legged frog, Rana sierrae, using both culture-dependent and culture-independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such "persistent" populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture-dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti-Bd probiotic treatments.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, San Francisco, California
| | - Roland A Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California
| | - Wesley Sparagon
- Department of Biology, Whitman College, Walla Walla, Washington
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, California
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California.,Museum of Vertebrate Zoology, University of California, Berkeley, California
| |
Collapse
|
33
|
Abarca JG, Vargas G, Zuniga I, Whitfield SM, Woodhams DC, Kerby J, McKenzie VJ, Murillo-Cruz C, Pinto-Tomás AA. Assessment of Bacterial Communities Associated With the Skin of Costa Rican Amphibians at La Selva Biological Station. Front Microbiol 2018; 9:2001. [PMID: 30233511 PMCID: PMC6129598 DOI: 10.3389/fmicb.2018.02001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibian skin is a suitable environment for rich communities of microorganisms, both beneficial and detrimental to the host. The amphibian cutaneous microbiota has been hypothesized to play an important role as symbionts, protecting their hosts against disease. Costa Rica has one of the most diverse assemblages of amphibians in the world and we know very little about the microbiota of these tropical animals. For comparison with other studies, we explore the diversity of the skin bacterial communities employing16S rRNA amplicon sequencing of swab samples from twelve species of frogs at La Selva Biological Station in Sarapiquí, Heredia province. The predominant phylum detected in our studies was Proteobacteria, followed by Bacteroidetes and Actinobacteria, with these three phyla representing 89.9% of the total bacterial taxa. At the family level, Sphingobacteriaceae and Comamonadaceae were highly represented among samples. Our results suggest that host species and host family are significant predictors of the variation in microbiota composition. This study helps set the foundation for future research about microbiota composition and resilience to unfavorable conditions, leading to improvement in managing strategies for endangered amphibian species.
Collapse
Affiliation(s)
- Juan G. Abarca
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Gabriel Vargas
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Ibrahim Zuniga
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Steven M. Whitfield
- Department of Conservation and Research, Zoo Miami, Miami, FL, United States
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jacob Kerby
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Valerie J. McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Adrián A. Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|