1
|
Guerra-García A, Trněný O, Brus J, Renzi JP, Kumar S, Bariotakis M, Coyne CJ, Chitikineni A, Bett KE, Varshney R, Pirintsos S, Berger J, von Wettberg EJB, Smýkal P. Genetic structure and ecological niche space of lentil's closest wild relative, Lens orientalis (Boiss.) Schmalh. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:232-244. [PMID: 38230798 DOI: 10.1111/plb.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Crops arose from wild ancestors and to understand their domestication it is essential to compare the cultivated species with their crop wild relatives. These represent an important source of further crop improvement, in particular in relation to climate change. Although there are about 58,000 Lens accessions held in genebanks, only 1% are wild. We examined the geographic distribution and genetic diversity of the lentil's immediate progenitor L. orientalis. We used Genotyping by Sequencing (GBS) to identify and characterize differentiation among accessions held at germplasm collections. We then determined whether genetically distinct clusters of accessions had been collected from climatically distinct locations. Of the 195 genotyped accessions, 124 were genuine L. orientalis with four identified genetic groups. Although an environmental distance matrix was significantly correlated with geographic distance in a Mantel test, the four identified genetic clusters were not found to occupy significantly different environmental space. Maxent modelling gave a distinct predicted distribution pattern centred in the Fertile Crescent, with intermediate probabilities of occurrence in parts of Turkey, Greece, Cyprus, Morocco, and the south of the Iberian Peninsula with NW Africa. Future projections did not show any dramatic alterations in the distribution according to the climate change scenarios tested. We have found considerable diversity in L. orientalis, some of which track climatic variability. The results of the study showed the genetic diversity of wild lentil and indicate the importance of ongoing collections and in situ conservation for our future capacity to harness the genetic variation of the lentil progenitor.
Collapse
Affiliation(s)
- A Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - O Trněný
- Agriculture Research Ltd, Troubsko, Czech Republic
| | - J Brus
- Department of Geoinformatics, Palacký University, Olomouc, Czech Republic
| | - J P Renzi
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - S Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - M Bariotakis
- Department of Biology, University of Crete, Heraklion, Greece
- Botanical Garden, Rethymnon, Greece
| | - C J Coyne
- Western Regional Plant Introduction Station, USDA-ARS, Pullman, WA, USA
| | - A Chitikineni
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - K E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - R Varshney
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Murdoch University, Murdoch, WA, Australia
| | - S Pirintsos
- Department of Biology, University of Crete, Heraklion, Greece
| | - J Berger
- CSIRO Plant Industry, Wembley, WA, Australia
| | - E J B von Wettberg
- Department of Plant and Soil Sciences, Gund Institute for the Environment, University of Vermont, Burlington, VT, USA
| | - P Smýkal
- Department of Botany, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Weeden NF, Lavin M, Abbo S, Coyne CJ, McPhee K. A hypervariable intron of the STAYGREEN locus provides excellent discrimination among Pisum fulvum accessions and reveals evidence for a relatively recent hybridization event with Pisum sativum. FRONTIERS IN PLANT SCIENCE 2023; 14:1233280. [PMID: 37692437 PMCID: PMC10492584 DOI: 10.3389/fpls.2023.1233280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
An analysis of 82 non-synonymous Pisum fulvum accessions for sequence variation in a fragment of the STAYGREEN (SGR) locus revealed 57 alleles, most of which differed in indel structure. Eight additional P. fulvum accessions, each supposedly synonymous with a different accession of the initial group, were also analyzed. In every case the paired synonymous accessions possessed the same SGR sequence but varied slightly for a 6-trait morphological phenotype, indicating that SGR sequence is a much more reliable indicator of accession identity than is a morphological characterization. SGR sequence analysis confirmed our previous finding that P. fulvum accessions separate into two allele groups. This division was not supported by results of previous studies that were based on sequences distributed across the entire genome, suggesting that the division may have been produced by selection at a nearby locus and that the SGR phylogeny may not be good indicator of overall relationships within the species. One P. fulvum accession, PI 595941 (=JI1796), displayed an SGR sequence outside the variation typical of the species. Instead, its allele resembled alleles limited to a set of Pisum sativum landraces from the Middle East, suggesting hybridization between ancestors of PI 595941 and some primitive form of domesticated P. sativum. With one exception from the extreme northwest corner of Israel, P. fulvum accessions collected north of latitude 35.5° N were fixed for alleles from group A. These northern accessions also displayed greatly reduced SGR sequence diversity compared to group A accessions collected from other regions, suggesting that the northern populations may represent recent extensions of the range of the species. Group B accessions were distributed from Lake Tiberias south and were generally sympatric with the southern group A accessions. Although group B accessions occupied a smaller area than group A, the SGR sequence diversity in this group (28 alleles in 33 accessions) exceeded that for group A.
Collapse
Affiliation(s)
- N. F. Weeden
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| | - M. Lavin
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| | - S. Abbo
- The Robert H. Smith Faculty of Agriculture, Food and Environment, and the Jacob & Rachel Liss Chair in Agronomy at the Hebrew University of Jerusalem, Rehovot, Israel
| | - C. J. Coyne
- Plant Germplasm Introduction and Testing Research, Agricultural Research Service (USDA), Pullman, WA, United States
| | - K. McPhee
- Department of Plant Sciences & Plant Pathology, College of Agriculture, Montana State University, Bozeman, MT, United States
| |
Collapse
|
3
|
Zhu X, Liang H, Jiang H, Kang M, Wei X, Deng L, Shi Y. Phylogeographic structure of Heteroplexis (Asteraceae), an endangered endemic genus in the limestone karst regions of southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:999964. [PMID: 36388513 PMCID: PMC9647136 DOI: 10.3389/fpls.2022.999964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Hui Liang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Haolong Jiang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Ming Kang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Lili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yancai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
4
|
Hellwig T, Abbo S, Sherman A, Ophir R. Prospects for the natural distribution of crop wild-relatives with limited adaptability: The case of the wild pea Pisum fulvum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110957. [PMID: 34315583 DOI: 10.1016/j.plantsci.2021.110957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Plant breeders and conservationist depend on knowledge about the genetic variation of their species of interest. Pisum fulvum, a wild relative of domesticated pea, has attracted attention as a genetic resource for crop improvement, yet little information about its diversity in the wild has been published hitherto. We sampled 15 populations of P. fulvum from Israeli natural habitats and conducted genotyping by sequencing to analyse their genetic diversity and adaptive state. We also attempted to evaluate the species past demography and the prospects of its future reaction to environmental changes. The results suggest that genetic diversity of P. fulvum is low to medium and is distributed between well diverged populations. Surprisingly, with 56 % in the total population the selfing rate was found to be significantly lower than expected from a species that is commonly assumed to be a predominant selfer. We found a strong genetic bottleneck during the last glacial period and only limited patterns of isolation by distance and environment, which explained 13 %-18 % of the genetic variation. Despite the weak signatures of genome-wide IBE, 1,354 markers were significantly correlated with environmental factors, 1,233 of which were located within known genes with a nonsynonymous to synonymous ratio of 0.382. Species distribution modelling depicted an ongoing fragmentation and decreased habitable area over the next 80 years under two different socio-economic pathways. Our results suggest that complex interactions of substantial drift and selection shaped the genome of P. fulvum. Climate changeis likely to cause further erosion of genetic diversity in P. fulvum. Systematic ex-situ conservation may be advisable to safeguard genetic variability for future utilization of this species.
Collapse
Affiliation(s)
- Timo Hellwig
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel; Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Shahal Abbo
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ron Ophir
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|