1
|
Yves A, Azevedo JAR, Pirani RM, Werneck FP. Local adaptation has a role in reducing vulnerability to climate change in a widespread Amazonian forest lizard. Heredity (Edinb) 2025:10.1038/s41437-025-00765-x. [PMID: 40325155 DOI: 10.1038/s41437-025-00765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
The extant genetic variation within and among taxa reflects a long history of diversification and adaptive mechanisms in response to climate change and landscape alterations. However, the velocity of current anthropogenic changes poses an imminent threat to global biodiversity. Understanding how species and populations might respond to global climate change provides valuable information for conservation in the face of these impacts. Here, we use genomic data to observe candidate loci under climate selection and test for genetic vulnerability to climate change in a widespread Amazonian ombrophilous lizard population. We found nine populations across Amazonia with a considerable amount of admixture among them. Distinct approaches of genome-environment association analyses revealed 56 candidate single-nucleotide polymorphisms (SNPs) under climatic selection, showing an east-west gradient in the adaptive landscape and a signal of local climate adaptation across the species range. According to our results, signals of local adaptation indicate that the species may not respond equally throughout its range, with some populations facing higher extinction risks. Genomic offset analysis predicts the southern and central portions of Amazonia to have a higher vulnerability to future climate change. Our findings highlight the importance of considering spatially explicit contexts with a large sampling coverage to evaluate how local adaptation and climatic vulnerability affect Amazonian forest ectothermic fauna.
Collapse
Affiliation(s)
- André Yves
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil.
| | - Josué A R Azevedo
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Renata M Pirani
- Ecology and Evolutionary Biology Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernanda P Werneck
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil
- Programa de Coleções Científicas Biológicas, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
2
|
Sherlock MB, Wilkinson M, Maddock ST, Nussbaum RA, Day JJ, Streicher JW. Submerged Corridors of Ancient Gene Flow in an Island Amphibian. Mol Ecol 2025; 34:e17742. [PMID: 40178938 PMCID: PMC12010468 DOI: 10.1111/mec.17742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Many island archipelagos sit on shallow continental shelves, and during the Pleistocene, these islands were often connected as global sea levels dropped following glaciation. Given a continental shelf only 30-60 m below sea level, the terrestrial biota of the Seychelles Archipelago likely dispersed amongst now isolated islands during the Pleistocene. Hypogeophis rostratus is an egg-laying, direct-developing caecilian amphibian found on 10 islands in the granitic Seychelles. Despite the seemingly limited dispersal abilities of this salt-intolerant amphibian, its distribution on multiple islands suggests likely historic dispersal across now submerged continental shelf corridors. We tested for the genetic signature of these historic corridors using fine-scale genomic data (ddRADseq). We found that genomic clusters often did not correspond to islands in the archipelago and that isolation-by-distance patterns were more consistent with gene flow across a continuous landscape than with isolated island populations. Using effective migration surfaces and ancestral range expansion prediction, we found support for contemporary populations originating near the large southern island of Mahé and dispersing to northern islands via the isolated Frégate island, with additional historic migration across the flat expanse of the Seychelles bank. Collectively, our results suggest that biogeographic patterns can retain signals from Pleistocene 'palaeo-islands' and that present-day islands can be thought of as hosting bottlenecks or transient refugia rather than discrete genetic units. Thus, the signatures of gene flow associated with palaeo-islands may be stronger than the isolating effects of contemporary islands in terrestrial species distributed on continental shelf islands.
Collapse
Affiliation(s)
- Miranda B. Sherlock
- HerpetologyNatural History MuseumLondonUK
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | | | - Simon T. Maddock
- HerpetologyNatural History MuseumLondonUK
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneUK
- Island Biodiversity and Conservation CentreUniversity of SeychellesMahéSeychelles
| | - Ronald A. Nussbaum
- Museum of Zoology and Department of Ecology and Evolutionary BiologyUniversity of Michigan, Ann ArborMichiganUSA
| | - Julia J. Day
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | | |
Collapse
|
3
|
Galfano TM, Herrera TM, Bulger JB, Stuart JN, Frey JK, Hope AG. Phylogenomic Analysis of Wide-Ranging Least Shrews Refines Conservation Priorities and Supports a Paradigm for Evolution of Biota Spanning Eastern North America and Mesoamerica. Ecol Evol 2025; 15:e71263. [PMID: 40357138 PMCID: PMC12066985 DOI: 10.1002/ece3.71263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Anthropogenic global change is impacting the evolutionary potential of biodiversity in ways that have been difficult to predict. Distinct evolutionary units within species may respond differently to the same environmental trends, reflecting unique geography, ecology, adaptation, or drift. Least shrews (Cryptotis parvus group) have a widespread distribution across North America, yet systematic relationships and ongoing evolutionary processes remain unresolved. Westernmost peripheral populations have been prioritized for conservation, but little is known of their evolutionary histories or population trajectories. The broad range of this group of species is coincident with many other temperate taxa, presenting a hypothesis that diversification of least shrews follows a repeated process through the Pleistocene, leading to regionally diagnosable conservation units. We use genomic data and niche modeling to delimit species and conservation units of least shrews. Our results show that least shrews warrant recognition as multiple distinct species, along with geographically discrete infraspecific lineages of C. parvus (sensu stricto). Western peripheral populations are evolutionarily distinct based on nuclear, but not mitochondrial data, possibly reflecting mitochondrial capture during the last glacial phase. This population represents a relict conservation unit, consistent with both an "adaptive unit" and "management unit" based on non-neutral and neutral divergence, respectively. Hindcast niche modeling supports growing evidence for a shared process of diversification among co-distributed biota, and forecast modeling suggests continued future loss of suitable environmental niche in peripheral regions. Given mito-nuclear discordance among samples of parapatric lineages, future environmental perturbation may continue to impact the genomic integrity of important conservation units, making ecological and genomic monitoring a critical need.
Collapse
Affiliation(s)
- Tommy M. Galfano
- Division of BiologyKansas State UniversityManhattanKansasUSA
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Tommy M. Herrera
- Division of BiologyKansas State UniversityManhattanKansasUSA
- Department of Integrative Biology, Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John B. Bulger
- New Mexico Department of Game and FishSanta FeNew MexicoUSA
| | | | - Jennifer K. Frey
- Department of Fish, Wildlife, and Conservation EcologyNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Andrew G. Hope
- Division of BiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
4
|
Garcia-Erill G, Liu S, Le MD, Hurley MM, Nguyen HD, Nguyen DQ, Nguyen DH, Santander CG, Sánchez Barreiro F, Gomes Martins NF, Hanghøj K, Salleh FM, Ramos-Madrigal J, Wang X, Sinding MHS, Morales HE, Stæger FF, Wilkinson N, Meng G, Pečnerová P, Yang C, Rasmussen MS, Schubert M, Dunn RR, Moltke I, Zhang G, Chen L, Wang W, Cao TT, Nguyen HM, Siegismund HR, Albrechtsen A, Gilbert MTP, Heller R. Genomes of critically endangered saola are shaped by population structure and purging. Cell 2025:S0092-8674(25)00390-3. [PMID: 40328258 DOI: 10.1016/j.cell.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
The saola is one of the most elusive large mammals, standing at the brink of extinction. We constructed a reference genome and resequenced 26 saola individuals, confirming the saola as a basal member of the Bovini. Despite its small geographic range, we found that the saola is partitioned into two populations with high genetic differentiation (FST = 0.49). We estimate that these populations diverged and started declining 5,000-20,000 years ago, possibly due to climate changes and exacerbated by increasing human activities. The saola has long tracts without genomic diversity; however, most of these tracts are not shared by the two populations. Saolas carry a high genetic load, yet their gradual decline resulted in the purging of the most deleterious genetic variation. Finally, we find that combining the two populations, e.g., in an eventual captive breeding program, would mitigate the genetic load and increase the odds of species survival.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Bioinformatics Research Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shanlin Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Minh Duc Le
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Hanoi, Vietnam; Vietnam and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Martha M Hurley
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | - Hung Dinh Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Dzung Quoc Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Dzung Huy Nguyen
- Forest Inventory and Planning Institute, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Faezah Mohd Salleh
- Globe Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | | | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany
| | | | | | | | - Mikkel Schubert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Center of Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Chen
- Center for Ecological and Environmental Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Wang
- Center for Ecological and Environmental Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Trung Tien Cao
- Institute of Biology, Chemistry and Environment, Vinh University, Vinh, Vietnam
| | - Ha Manh Nguyen
- Center for Nature Conservation and Development, No. 05, 56/119 Tu Lien Street, Hanoi, Vietnam
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Sun S, Li S, Seim I, Du X, Yang X, Liu K, Wei Z, Shao C, Fan G, Liu X. Complete mitogenomes reveal high diversity and recent population dynamics in Antarctic krill. BMC Genomics 2025; 26:419. [PMID: 40301719 PMCID: PMC12039093 DOI: 10.1186/s12864-025-11579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND The Antarctic krill (Euphausia superba) is a keystone species in the Southern Ocean ecosystem, influencing food web dynamics and ecosystem functionality. Despite its ecological importance, further exploration is essential to understand their population dynamics. RESULTS In this study, we present the complete mitogenome of the Antarctic krill. The assembly is 18,926 bp, including a notably large 3,952 bp control region (CR). The CR features a satellite repeat spanning 2,289 bp, showcasing the effectiveness of long-read sequencing in resolving complex genomic regions. Additionally, we identified 900 nuclear-mitochondrial segments (NUMTs) totaling 2.79 Mb, shedding light on the dynamic integration of mitochondrial DNA (mtDNA) into the nuclear genomes. By establishing a dataset comprising 80 krill mitogenomes, we unveil substantial mitochondrial diversity, particularly within the ND4 gene. While our analysis reveals no significant differentiation among four geographically distinct groups, we identify at least four maternal genetic clusters. Haplotype network analysis and demographic reconstructions suggest a recent population expansion, likely driven by favorable environmental conditions during the late Pleistocene. Furthermore, our investigation into selection pressures on mitochondrial genes reveals evidence of purifying selection across all 13 protein-coding genes, underscoring the pivotal role of mtDNA conservation in maintaining mitochondrial function under extreme environments. CONCLUSIONS This study provides a repository of Antarctic krill mitogenomes and insights into the population genetics and evolutionary history of this ecologically important species from a mitogenomic perspective, with implications for krill conservation and management in the Southern Ocean.
Collapse
Affiliation(s)
- Shuai Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xiao Du
- BGI Research, Qingdao, 266555, China
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
| | - Xianwei Yang
- BGI Research, Qingdao, 266555, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhanfei Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen, 518083, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
6
|
Theodoridis S, Hickler T, Nogues-Bravo D, Ploch S, Mishra B, Thines M. Satellite-observed mountain greening predicts genomic erosion in a grassland medicinal herb over half a century. Curr Biol 2025:S0960-9822(25)00436-1. [PMID: 40311621 DOI: 10.1016/j.cub.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025]
Abstract
Mountains are biodiversity hotspots contributing essential benefits to human societies, but global environmental change is rapidly altering their habitats. During the past five decades, increasing temperatures and land-use change in montane and subalpine elevations facilitated the productivity and expansion of competitive vegetation, termed as "greening," with adverse effects on open grassland habitats. Although vegetation greening is well-documented through satellite observations, its impact on the populations and genomic integrity of affected species remains underexplored. Here, we address this challenge by integrating 40 years of remote sensing data with museum genomics and fieldwork to assess the impact of mountain greening on the genomic diversity of grassland plants in the southern Balkan peninsula. We sequenced the genomes of historical and modern populations of Ironwort, a plant of significant medicinal value, and demonstrate widespread genomic erosion across its populations. Our results show that, on average, 6% (0%-20%) of Ironwort's genome is affected by inbreeding accumulation over the past half century, indicating various degrees of population declines. Importantly, we show that genomic erosion is highly predictable by the normalized difference vegetation index (NDVI) rates of change. Our models suggest that faster increases in vegetation density are associated with higher population declines in this grassland species, revealing the negative impacts of increasing productivity in mountain ecosystems. By linking two independent and disparate monitoring indicators, we demonstrate the ability of remote sensing to predict the consequences of environmental change on temporal genomic change in mountain grassland species, with far-reaching implications for protecting natural resources in these fragile ecosystems.
Collapse
Affiliation(s)
- Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany; Department for Biological Sciences Institute of Ecology, Evolution and Diversity, Goethe University of Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany; Operational Unit BEYOND Centre for EO Research and Satellite Remote Sensing, Institute for Astronomy, Astrophysics Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Karystou St. 6, Athens 11523, Greece.
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany; Department of Physical Geography, Goethe University of Frankfurt, Altenhöferallee 1, Frankfurt am Main 60438, Germany
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany; Department for Biological Sciences Institute of Ecology, Evolution and Diversity, Goethe University of Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany; LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Straße 14-16, Frankfurt am Main 60325, Germany
| |
Collapse
|
7
|
Faulk C, Walls C, Nelson B, Arakaki PR, Gonzalez IHL, Banevicius N, Teixeira RHF, Medeiros MA, Silva GP, Talebi M, Chung WCJ, Takeshita RSC. De novo whole-genome assembly of the critically endangered southern muriqui (Brachyteles arachnoides). G3 (BETHESDA, MD.) 2025; 15:jkaf034. [PMID: 39960481 PMCID: PMC12005144 DOI: 10.1093/g3journal/jkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/08/2025] [Indexed: 04/18/2025]
Abstract
The southern muriqui (Brachyteles arachnoides) is one of the 2 species of muriquis (genus Brachyteles), the largest body-sized nonhuman primate from the Neotropics. Deforestation and illegal hunting have led to a continuing decline in the muriqui population, leading to their current classification as critically endangered. The lack of a reference genome for the genus Brachyteles prevents scientists from taking full advantage of genomic tools to improve their conservation status. This study reports the first whole-genome assemblies of the genus Brachyteles, using DNA from 2 zoo-housed southern muriqui females. We performed sequencing with Oxford Nanopore Technologies' PromethION 2 Solo using a native DNA library preparation to preserve DNA modifications. We used Flye to assemble genomes for each individual. The best final assembly was 2.6 Gb, in 319 contigs, with an N50 of 58.8 Mb and an L50 of 17. BUSCO completeness score for this assembly was 99.5%. The assembly of the second individual had similar quality, with a length of 2.6 Gb, 759 contigs, an N50 of 47.9 Mb, an L50 of 18, and a BUSCO completeness score of 99.04%. Both assemblies had <1% duplicates, missing, or fragments. Gene model mapper detected 24,353 protein-coding genes, and repetitive elements accounted for 46% of the genome. We also reported the mitogenome, which had 16,562 bp over 37 genes, and global methylation of CpG sites, which revealed a mean of 80% methylation. Our study provides a high-quality reference genome assembly for the southern muriqui, expanding the tools that can be used to aid in their conservation efforts.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Brandie Nelson
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | - Paloma R Arakaki
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
- Centro de Ciências da Natureza, Programa de Pós-Graduação em Conservação da Fauna, Universidade Federal de São Carlos, Buri, SP 18290-000, Brazil
| | - Irys H L Gonzalez
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
| | - Nancy Banevicius
- Departamento de Pesquisa e Conservação da Fauna, Zoológico Municipal de Curitiba, Curitiba, PR 80020-290, Brazil
| | - Rodrigo H F Teixeira
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
- Hospital Veterinário, Universidade de Sorocaba, Sorocaba, SP 18023-000, Brazil
- Programa de Pós-Graduação em Animais Silvestres, Universidade Estadual Paulista, Botucatu, SP 18618-681, Brazil
| | - Marina A Medeiros
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
| | - Gessiane P Silva
- Instituto de Biodiversidades e Florestas, Universidade Federal do Oeste do Pará, PA, Santarém, PA 68035-110, Brazil
| | - Mauricio Talebi
- Departamento de Ciências Ambientais, Programa de Pós-Graduação Análise Ambiental Integrada, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
| | - Rafaela S C Takeshita
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
- Department of Anthropology, Kent State University, Kent, OH 44242, United States
| |
Collapse
|
8
|
Freund DR, Bump JK. Evaluation of non-invasive hair snares for North American beavers ( Castor canadensis): placement, efficiency, and beaver's behavioral response. PeerJ 2025; 13:e19080. [PMID: 40191759 PMCID: PMC11972565 DOI: 10.7717/peerj.19080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/10/2025] [Indexed: 04/09/2025] Open
Abstract
Although the commercial demand for North American beaver (Castor canadensis) hair shaped much of the socio-ecological landscape of North America, use of beaver hair in wildlife research has focused on the Eurasian beaver (Castor fiber) and collection methods have largely involved handling animals alive or sampling dead animals. In 2022 and 2023, we tested the utility of barbed-wire hair snares to non-invasively collect hair from beavers around ponds in Northern Minnesota. At 56 different beaver ponds, we deployed 64 hair snares with remote cameras. From these data, we determined the efficiency of hair snares to collect samples, from what side of the body samples are collected, the weight and dirtiness of samples collected, the potential for bycatch, and if snares impede beavers' ability to travel on land. We collected beaver hair samples from 94% of snares deployed, with snares sampling beaver legs and back most often. Forty-two percent of samples collected had no dirt on them, and the most productive snare collected on average 3.4 mg of clean hair per day. Muskrats were the second most sampled animal, but only made up on average 16% of total samples recorded on video per snare. Snares inhibited beaver travel in 0.1% of videos (n = 5,627 videos of beavers recorded, n = 6 videos where beaver travel was inhibited). We did not find any predictive variable that influenced the collection of beaver hair (e.g., location of snare at pond, presence of wire brushes on snare, number of times beavers touched snares, or location on the beaver's body that was sampled). Our study provides in depth evidence of passive hair snare methods used to collect North American beaver hair, and serves as a guide to non-invasive hair snaring for multiple objectives such as hormone, genetic, and stable-isotope sample collection.
Collapse
Affiliation(s)
- Dani R. Freund
- Department of Environment and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, United States of America
| | - Joseph K. Bump
- Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, United States of America
| |
Collapse
|
9
|
De Cahsan B, Sandoval Velasco M, Westbury MV, Duchêne DA, Strander Sinding MH, Morales HE, Kalthoff DC, Barnes I, Brace S, Portela Miguez R, Roca AL, Greenwood AD, Johnson RN, Lott MJ, Gilbert MTP. Road to Extinction? Past and Present Population Structure and Genomic Diversity in the Koala. Mol Biol Evol 2025; 42:msaf057. [PMID: 40129172 PMCID: PMC12014528 DOI: 10.1093/molbev/msaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/28/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Koalas are arboreal herbivorous marsupials, endemic to Australia. During the late 1800s and early 1900s, the number of koalas declined dramatically due to hunting for their furs. In addition, anthropogenic activities have further decimated their available habitat, and decreased population numbers. Here, we utilize 37 historic and 25 modern genomes sampled from across their historic and present geographic range, to gain insights into how their population structure and genetic diversity have changed across time; assess the genetic consequences of the period of intense hunting, and the current genetic status of this iconic Australian species. Our analyses reveal how genome-wide heterozygosity has decreased through time and unveil previously uncharacterized mitochondrial haplotypes and nuclear genotypes in the historic dataset, which are absent from today's koala populations.
Collapse
Affiliation(s)
- Binia De Cahsan
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Marcela Sandoval Velasco
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Center for Genome Sciences (CCG), National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - David A Duchêne
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | | | - Hernán E Morales
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | | | - Alfred L Roca
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Rebecca N Johnson
- Smithsonian National Museum of Natural History, Washington, D.C. 20560, USA
| | - Matthew J Lott
- Australian Centre for Wildlife Genomics, Australian Museum, Sydney, NSW 2010, Australia
| | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| |
Collapse
|
10
|
Eriksen EF, Andrews AJ, Nielsen SV, Persson P, Malca E, Onar V, Aniceti V, Piquès G, Piattoni F, Fontani F, Wiech M, Ferter K, Kersten O, Ferrari G, Cariani A, Tinti F, Cilli E, Atmore LM, Star B. Five millennia of mitonuclear discordance in Atlantic bluefin tuna identified using ancient DNA. Heredity (Edinb) 2025; 134:175-185. [PMID: 39920258 PMCID: PMC11977281 DOI: 10.1038/s41437-025-00745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Mitonuclear discordance between species is readily documented in marine fishes. Such discordance may either be the result of past natural phenomena or the result of recent introgression from previously seperated species after shifts in their spatial distributions. Using ancient DNA spanning five millennia, we here investigate the long-term presence of Pacific bluefin tuna (Thunnus orientalis) and albacore (Thunnus alalunga) -like mitochondrial (MT) genomes in Atlantic bluefin tuna (Thunnus thynnus), a species with extensive exploitation history and observed shifts in abundance and age structure. Comparing ancient (n = 130) and modern (n = 78) Atlantic bluefin MT genomes from most of its range, we detect no significant spatial or temporal population structure, which implies ongoing gene flow between populations and large effective population sizes over millennia. Moreover, we identify discordant MT haplotypes in ancient specimens up to 5000 years old and find that the frequency of these haplotypes has remained similar through time. We therefore conclude that MT discordance in the Atlantic bluefin tuna is not driven by recent introgression. Our observations provide oldest example of directly observed MT discordance in the marine environment, highlighting the utility of ancient DNA to obtain insights in the long-term persistence of such phenomena.
Collapse
Affiliation(s)
- Emma Falkeid Eriksen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| | - Adam Jon Andrews
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
- Norwegian Institute of Water Research, Oslo, Norway
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | | | - Per Persson
- Museum of Cultural History, University of Oslo, Oslo, Norway
| | - Estrella Malca
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
- NOAA Fisheries, Southeast Fisheries Science Center, Miami, FL, USA
| | - Vedat Onar
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Kocman University, Muğla, Türkiye
| | - Veronica Aniceti
- Consejo Superior de Investigaciones Científicas, Institució Milà i Fontanals (CSIC-IMF), Barcelona, Spain
| | - Gäel Piquès
- ASM, CNRS, Université Paul Valéry-Montpellier 3, Montpellier, France
| | - Federica Piattoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Martin Wiech
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Keno Ferter
- Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Alessia Cariani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Fausto Tinti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Lane M Atmore
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences (IBV), University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Chang Y, Zhang R, Liu Y, Liu Y, Tao L, Liu D, Ma Y, Sun W. Conservation genomics of a threatened subtropical Rhododendron species highlights the distinct conservation actions required in marginal and admixed populations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70175. [PMID: 40287966 PMCID: PMC12034323 DOI: 10.1111/tpj.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
With the impact of climate change and anthropogenic activities, the underlying threats facing populations with different evolutionary histories and distributions, and the associated conservation strategies necessary to ensure their survival, may vary within a species. This is particularly true for marginal populations and/or those showing admixture. Here, we re-sequence genomes of 102 individuals from 21 locations for Rhododendron vialii, a threatened species distributed in the subtropical forests of southwestern China that has suffered from habitat fragmentation due to deforestation. Population structure results revealed that R. vialii can be divided into five genetic lineages using neutral single-nucleotide polymorphisms (SNPs), whereas selected SNPs divide the species into six lineages. This is due to the Guigu (GG) population, which is identified as admixed using neutral SNPs, but is assigned to a distinct genetic cluster using non-neutral loci. R. vialii has experienced multiple genetic bottlenecks, and different demographic histories have been suggested among populations. Ecological niche modeling combined with genomic offset analysis suggests that the marginal population (Northeast, NE) harboring the highest genetic diversity is likely to have the highest risk of maladaptation in the future. The marginal population therefore needs urgent ex situ conservation in areas where the influence of future climate change is predicted to be well buffered. Alternatively, the GG population may have the potential for local adaptation, and will need in situ conservation. The Puer population, which carries the heaviest genetic load, needs genetic rescue. Our findings highlight how population genomics, genomic offset analysis, and ecological niche modeling can be integrated to inform targeted conservation.
Collapse
Affiliation(s)
- Yuhang Chang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
12
|
Nehemia A. Genetic diversity, population genetic structure and demographic history of the Ribbontail stingray Taeniura lymma (Fabricius, 1775) (elasmobranchii: myliobatiformes: dasyatidae) along the Tanzanian coastline. Mitochondrial DNA A DNA Mapp Seq Anal 2025; 35:93-101. [PMID: 39552554 DOI: 10.1080/24701394.2024.2427841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
The Ribbontail stingray Taeniura lymma is an economically important fish and attractive species for the aquarium trade industry. Overfishing, habitat degradation, and pollution, however, pose a threat to this species. This study used partial mitochondrial cytochrome oxidase subunit I (COI) sequences (603 base pairs long) from 96 samples of T. lymma collected at five fish-landing sites (Deep Sea-Tanga, Malindi-Unguja, Kaole-Bagamoyo, Kivukoni-Dar es Salaam, and Bandarini-Mtwara) located along the coast of Tanzania to determine the species' genetic diversity, population genetic structure, and demographic history. The findings revealed an average nucleotide diversity of 0.24 ± 0.16% and a haplotype diversity of 0.75 ± 0.04. Nucleotide and haplotype diversities were relatively low at Kaole-Bagamoyo compared to the other studied localities. An Analysis of Molecular Variance (AMOVA) indicated limited but statistically significant genetic differences among populations (Overall FST = 0.09, p < 0.01). Pairwise AMOVA revealed genetic difference between the Deep Sea-Tanga population and all other populations studied with exception of Malindi-Unguja. Analyses of mismatch distribution, demographic history, and a haplotype network support a scenario of historical population expansion in the studied species. Immediate effort is required to protect population exhibiting low genetic diversity in this commercially important ray.
Collapse
Affiliation(s)
- Alex Nehemia
- Department of Biosciences, College of Natural and Applied Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
13
|
Hausdorf B. Species Delimitation Using Genomic Data: Options and Limitations. Mol Ecol 2025; 34:e17717. [PMID: 40026292 PMCID: PMC11974488 DOI: 10.1111/mec.17717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
The most effective approaches for species discovery and species validation with genomic data remain underexplored. This study evaluates the merits and limitations of phylogenetic approaches based on the multispecies coalescent model and population genetic approaches for species discovery, i.e., species delimitation in the absence of prior knowledge, using genomic datasets from four well-known radiations. Furthermore, it demonstrates how geographic data can be integrated with the genomic data for species validation, i.e., for testing primary species hypotheses. The multispecies coalescent model-based approaches tr2 and soda resulted in high over-splitting of species, low percentages of species delimited according to the current classification, and low percentages of individuals assigned to the same species as in the current classification across all four species complexes studied. Conversely, the species numbers were slightly underestimated based on the structure results. Although the proportion of species delimited according to the current classification and the proportion of individuals assigned to the same species as in the current classification in the classifications based on the structure results is approximately twice that of the classifications proposed by the multispecies coalescent model-based approaches, it remains unsatisfactory. A slight over-splitting of species into population groups can be corrected by species validation with isolation-by-distance tests if a sufficient number of populations have been sampled for each species. Sampling design is an essential step in any taxonomic study, as it has a significant impact on the delimitation of the species and the possibility of their validation.
Collapse
Affiliation(s)
- Bernhard Hausdorf
- Leibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Universität HamburgHamburgGermany
| |
Collapse
|
14
|
Chen X, Han W, Chang X, Tang C, Chen K, Bao L, Zhang L, Hu J, Wang S, Bao Z. High-quality genome assembly of the azooxanthellate coral Tubastraea coccinea (Lesson, 1829). Sci Data 2025; 12:507. [PMID: 40140403 PMCID: PMC11947264 DOI: 10.1038/s41597-025-04839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Coral reefs are among the most biodiverse and economically significant ecosystems globally, yet they are increasingly degrading due to global climate change and local human activities. The sun coral Tubastraea coccinea (T. coccinea) an obligate heterotroph lacking symbiotic zooxanthellae, exhibits remarkable tolerance to conditions that cause bleaching and mortality in zooxanthellate species. With its extensive low-latitude distribution across multiple oceans, T. coccinea has become a highly invasive species, adversely impacting native species, degrading local ecosystems, and causing significant socio-economic challenges that demand effective management. Despite substantial research efforts, the molecular biology of T. coccinea remains insufficiently characterized. To address this gap, we generated a draft genome assembly for T. coccinea using PacBio Hi-Fi long-read sequencing. The assembly spans 875.9 Mb with a scaffold N50 of 694.3 kb and demonstrates high completeness, with a BUSCO score of 97.4%. A total of 37,307 protein-coding sequences were identified, 95.2% of which were functionally annotated through comparisons with established protein databases. This reference genome provides a valuable resource for understanding the genetic structure of T. coccinea, advancing research into its adaptive mechanism to environmental changes, and informing conservation and management strategies to mitigate its invasive impact.
Collapse
Affiliation(s)
- Xiaomei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Wentao Han
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Xinyao Chang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Caiyin Tang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Kai Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lingling Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Jingjie Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
| |
Collapse
|
15
|
Carneiro CM, Shields-Estrada A, Boville AE, Alves-Ferreira G, Xu T, Arnott RLW, Allen-Love CM, Puertas M, Jacisin JJ, Tripp HC, Basham EW, Zamudio KR, Belasen AM. Toward a Global Science of Conservation Genomics: Coldspots in Genomic Resources Highlight a Need for Equitable Collaborations and Capacity Building. Mol Ecol 2025:e17729. [PMID: 40091865 DOI: 10.1111/mec.17729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Advances in genomic sequencing have magnified our understanding of ecological and evolutionary mechanisms relevant to biodiversity conservation. As a result, the field of conservation genomics has grown rapidly. Genomic data can be effective in guiding conservation decisions by revealing fine-scale patterns of genetic diversity and adaptation. Adaptive potential, sometimes referred to as evolutionary potential, is particularly informative for conservation due to its inverse relationship with extinction risk. Yet, global coldspots in genomic resources impede progress toward conservation goals. We undertook a systematic literature review to characterise the global distribution of genomic resources for amphibians and reptiles relative to species richness, IUCN status, and predicted global change. We classify the scope of available genomic resources by their potential applicability to global change. Finally, we examine global patterns of collaborations in genomic studies. Our findings underscore current priorities for expanding genomic resources, especially those aimed at predicting adaptive potential to future environmental change. Our results also highlight the need for improved global collaborations in genomic research, resource sharing, and capacity building in the Global South.
Collapse
Affiliation(s)
- Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | | | - Alexandra E Boville
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Gabriela Alves-Ferreira
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Tianyi Xu
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Ryan L Wong Arnott
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chloé M Allen-Love
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Micaela Puertas
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Departamento Académico de Biología, Universidad Nacional Agraria la Molina, Lima, Peru
| | - John J Jacisin
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hannah Chapman Tripp
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Edmund W Basham
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Kelly R Zamudio
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Anat M Belasen
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
16
|
Jansson E, Ayllon F, Rubin CJ, Casas L, Saborido-Rey F, Furmanek T, Brieuc MSO, Villegas-Rios D, Quintela M, Edvardsen RB, Lille-Langøy R, Glover KA. Genomic Landscape of Divergence in Ballan Wrasse (Labrus bergylta). Mol Ecol 2025:e17732. [PMID: 40095420 DOI: 10.1111/mec.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The architecture underpinning genomic divergence is still a largely uncharted territory and likely case-dependent. Here, we investigated genome-wide variation in Ballan wrasse, a northeastern Atlantic fish species that displays two sympatric colour morphs, spotty and plain, that have been suggested to represent subspecies. We produced a chromosome-level reference genome and thereafter investigated genomic divergence among 152 individuals including both morphs, from two localities in Spain and Norway each and one in France. Differences between morphs dominated in Spain in accordance with sympatric divergence, whereas in Norway allopatric differentiation was prominent and repeated genomic signals of local divergence were found. Chromosomes had large low-recombining areas shared across all populations. Within the Spanish morphs, these areas contained large islands of divergence, totalling ~11% of the genome, and showed high morph specificity and strong selection. The same regions showed frequent admixture in the French morphs and no differentiation in Norway. In contrast, divergent regions observed between sampling localities in Norway were shorter and found throughout the genome. High inbreeding and lower diversity were observed in the Norwegian samples, consistent with the proposed recolonisation bottleneck and subsequent drift. Several genomic regions were significantly associated with morphs and contained tens of genes of diverse functions, suggesting that colouration is unlikely to be the sole driver of divergence. Our results do not support the hypothesis of shared larger genomic features underlying intraspecific colour divergence. Instead, we observe gradual accumulation of differences into low-recombining regions, likely when additional factors like assortative mating and/or lack of gene flow favour their development.
Collapse
Affiliation(s)
| | | | - Carl-Johan Rubin
- Institute of Marine Research, Bergen, Norway
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Laura Casas
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Babaei S, Varkey DA, Adamack AT, LeBlanc NM, Puncher GN, Parent GJ, Wang Y, Rowe S, D’Aloia CC, Pavey SA. Genome-wide SNPs reveal novel genetic relationships among Atlantic cod (Gadus morhua) from the south coast of Newfoundland, Canada (subdivision 3Ps), Northern cod stock complex, and Gulf of St Lawrence. PLoS One 2025; 20:e0317768. [PMID: 40085548 PMCID: PMC11908700 DOI: 10.1371/journal.pone.0317768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/03/2025] [Indexed: 03/16/2025] Open
Abstract
The south coast of Newfoundland, Canada (Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps) is known to be a mixing zone for Atlantic cod (Gadus morhua). Tagging and genetic studies have shown cod from the Northern and Southern Gulf of St. Lawrence (NAFO Divisions 3Pn, 4RST), Southern Grand Banks (3NO), and the Northern cod stock complex (2J3KL) frequent the waters of 3Ps at various times throughout the year, but the extent of genetic mixing is unknown. However, 3Ps has not been the central focus of previous large-scale genomic analyses of population structure, a knowledge gap that we address using single nucleotide polymorphisms. Using 38,111 neutral markers from reduced representation next-generation sequencing data, we determined the provenance of 3Ps cod relative to the Northern stock complex, Gulf of St. Lawrence, Bay of Fundy, and Gulf of Maine. We present evidence for genetic similarity between 3Ps and the Northern stock complex, particularly NAFO Division 3L. Additionally, genetic clustering analyses suggest 3Ps to be a mixed stock, containing individuals from the Northern stock complex and Gulf of St. Lawrence. Genetic clustering also suggests that there are two subtle subclusters of Northern stock complex and 3Ps cod, indicating there may be subtle population structure within the Northern stock complex and surrounding zones. This new information on population structure gives insight into connectivity and may be useful in future management for rebuilding cod populations.
Collapse
Affiliation(s)
- Sarah Babaei
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Divya A. Varkey
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John, Newfoundland and Labrador, Canada
| | - Aaron T. Adamack
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John, Newfoundland and Labrador, Canada
| | - Nathalie M. LeBlanc
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Gregory N. Puncher
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Geneviève J. Parent
- Fisheries and Oceans Canada, Maurice-Lamontagne Institute, Mont-Joli, Quebec, Canada
| | - Yanjun Wang
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, New Brunswick, Canada
| | - Sherrylynn Rowe
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John, Newfoundland and Labrador, Canada
| | - Cassidy C. D’Aloia
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Scott A. Pavey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
18
|
Martin AM, Johnson JA, Berry RB, Carling M, Martínez Del Rio C. Contrasting Genomic Diversity and Inbreeding Levels Among Two Closely Related Falcon Species With Overlapping Geographic Distributions. Mol Ecol 2025; 34:e17549. [PMID: 39400432 DOI: 10.1111/mec.17549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Genomic resources are valuable to examine historical demographic patterns and their effects to better inform management and conservation of threatened species. We evaluated population trends and genome-wide variation in the near-threatened Orange-breasted Falcon (Falco deiroleucus) and its more common sister species, the Bat Falcon (F. rufigularis), to explore how the two species differ in genomic diversity as influenced by their contrasting long-term demographic histories. We generated and aligned whole genome resequencing data for 12 Orange-breasted Falcons and 9 Bat Falcons to an annotated Gyrfalcon (F. rusticolus) reference genome that retained approximately 22.4 million biallelic autosomal SNPs (chromosomes 1-22). Our analyses indicated much lower genomic diversity in Orange-breasted Falcons compared to Bat Falcons. All sampled Orange-breasted Falcons were significantly more inbred than the sampled Bat Falcons, with values similar to those observed in island-mainland species comparisons. The distribution of runs of homozygosity showed variation suggesting long-term low population size and the possibility of bottlenecks in Orange-breasted Falcons contrasting with consistently larger populations in Bat Falcons. Analysis of genetic load suggests that Orange-breasted Falcons are less likely to experience inbreeding depression than Bat Falcons due to reduced inbreeding load but are at elevated risk from fixation of deleterious gene variants and perhaps a reduced adaptive potential. These genomic analyses highlight differences in the historical demography of two closely related species that have influenced their current genomic diversity and should result in differing strategies for their continued conservation.
Collapse
Affiliation(s)
- Audrey M Martin
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | | | | | - Matthew Carling
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | | |
Collapse
|
19
|
Schmidt DA, Russello MA. Genomic Vulnerability of a Sentinel Mammal Under Climate Change. Mol Ecol 2025:e17688. [PMID: 39969169 DOI: 10.1111/mec.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/07/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Climate change poses a significant threat to biodiversity, particularly in alpine ecosystems where species have already undergone elevational range shifts. Genomics can be used to estimate the adaptive potential of species, as well as the shift in adaptive genomic composition necessary for populations to adjust to climate change (e.g., genomic offset). Here, we investigated patterns of climate-mediated adaptive genetic variation and predicted the degree of genomic offset under multiple climate change scenarios for a sentinel alpine mammal, the American pika (Ochotona princeps). We collected genome-wide data (29,709 SNPs) from 363 individuals spanning the entire range in western North America and employed genotype-environment association analyses to identify 924 robust outlier SNPs, several of which were linked to genes previously associated with high elevation and hypoxia responses in various pika species (Ochotonidae). Adaptive genomic variation was most strongly influenced by mean warmest month temperature, followed by precipitation of the coldest quarter. Spatial patterns of genomic offset were heterogeneous, significantly predicted by levels of adaptive genetic variation, elevation and latitude. Sites within the Northern Rocky Mountains exhibited the highest genomic offset under projected climate change despite possessing high levels of adaptive genetic variation. As such, while our study provides an example of how genomic data can be used to explore the potential consequences of climate change, it further highlights the need for careful consideration of genomic offset values within their proper ecological context.
Collapse
Affiliation(s)
- Danielle A Schmidt
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
20
|
Bemmels JB, Starko S, Weigel BL, Hirabayashi K, Pinch A, Elphinstone C, Dethier MN, Rieseberg LH, Page JE, Neufeld CJ, Owens GL. Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp. Curr Biol 2025; 35:688-698.e8. [PMID: 39826555 DOI: 10.1016/j.cub.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests are declining in many parts of the northeast Pacific.1,2,3,4 In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles,5,6,7 but natural selection may purge harmful variants.8,9,10 To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.) from the coastlines of British Columbia and Washington. We identified 6 to 7 geographically and genetically distinct clusters in each species. Low effective population size was associated with low genetic diversity and high inbreeding coefficients (including increased selfing rates), with extreme variation in these genetic health indices among bull kelp populations but more moderate variation in giant kelp. We found no evidence that natural selection is purging putative recessive deleterious alleles in either species. Instead, genetic drift has fixed many such alleles in small populations of bull kelp, leading us to predict (1) reduced within-population inbreeding depression in small populations, which may be associated with an observed shift toward increased selfing rate, and (2) hybrid vigor in crosses between small populations. Our genomic findings imply several strategies for optimal sourcing and crossing of populations for restoration and aquaculture, but these require experimental validation. Overall, our work reveals strong genetic structure and suggests that conservation strategies should consider the multiple health risks faced by small populations whose evolutionary dynamics are dominated by genetic drift.
Collapse
Affiliation(s)
- Jordan B Bemmels
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Samuel Starko
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of Western Australia, School of Biological Sciences, Stirling Highway, Crawley, WA 6009, Australia
| | - Brooke L Weigel
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA; Western Washington University, College of the Environment, High Street, Bellingham, WA 98225, USA
| | - Kaede Hirabayashi
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; University of British Columbia, Michael Smith Laboratories, East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alex Pinch
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Cassandra Elphinstone
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Megan N Dethier
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA
| | - Loren H Rieseberg
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan E Page
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Christopher J Neufeld
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia Okanagan, Department of Biology, University Way, Kelowna, BC V1V 1V7, Canada
| | - Gregory L Owens
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
21
|
Kobayashi J, Honda R, Hosoya S, Nochiri Y, Matsuzaki K, Sugimoto K, Nagano AJ, Kumagai A, Kikuchi K, Kurokawa T. Genome-Assisted Gene-Flow Rescued Genetic Diversity Without Hindering Growth Performance in an Inbred Coho Salmon (Oncorhynchus kisutch) Population Selected for High Growth Phenotype. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:38. [PMID: 39890695 PMCID: PMC11785656 DOI: 10.1007/s10126-025-10416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Selective breeding is a powerful tool for improving aquaculture production. A well-managed breeding program is essential, as populations can otherwise lose genetic diversity, leading to reduced selection response and inbreeding excesses. In such cases, genetic diversity in broodstock must be restored by introducing individuals from external populations. However, this can reduce the accumulated genetic gains from selective breeding. However, the selective introduction of individuals with superior phenotypes will allow the restoration of genetic diversity without sacrificing these gains. In this study, we demonstrated this possibility using a selectively bred (SB) and a randomly bred (RB) population of coho salmon (Oncorhynchus kisutch). Forty males with superior growth were selected from the RB population using genomic selection and crossed with 127 randomly collected females from the SB population, producing a newly bred (NB) population. Genetic diversity, assessed from population statistics such as effective number of alleles, allele richness, and observed heterozygosity of 11 microsatellite markers, was higher in NB than in SB and RB. Additionally, fork length and body weight were compared among the three populations after 12 months of growth post-fertilization in common tanks. The least-squares means of fork length and body weight were similar between NB (164.9 mm and 57.9 g) and SB (161.1 mm and 53.7 g), while both were significantly greater than RB (150.4 mm and 43.0 g). Our results highlight the effectiveness of genome-assisted gene flow in restoring the genetic diversity of a population without compromising accumulated genetic gain in growth.
Collapse
Affiliation(s)
- Junya Kobayashi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Ryo Honda
- Miyagi Prefecture Fisheries Technology Institute, Freshwater Fisheries Experimental Station., Miyagi, Taiwa, 981-3625, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka, 431-0214, Japan.
| | - Yuki Nochiri
- Miyagi Prefecture Fisheries Technology Institute, Freshwater Fisheries Experimental Station., Miyagi, Taiwa, 981-3625, Japan
| | - Keisuke Matsuzaki
- Miyagi Prefecture Fisheries Technology Institute, Freshwater Fisheries Experimental Station., Miyagi, Taiwa, 981-3625, Japan
| | - Koichi Sugimoto
- Miyagi Prefecture Fisheries Technology Institute, Freshwater Fisheries Experimental Station., Miyagi, Taiwa, 981-3625, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-Cho, Shiga , Otsu-Shi, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Akira Kumagai
- Miyagi Prefecture Fisheries Technology Institute, Freshwater Fisheries Experimental Station., Miyagi, Taiwa, 981-3625, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Tadahide Kurokawa
- Fisheries Resource Institute, Japan, Fisheries Research and Education Agency , Kushiro Field Station, 116 Katsurakoi, Kushiro, Hokkaido, 085-0802, Japan
| |
Collapse
|
22
|
Baumgartner CD, Jourdain E, Bonhoeffer S, Borgå K, Heide-Jørgensen MP, Karoliussen R, Laine JT, Rosing-Asvid A, Ruus A, Tavares SB, Ugarte F, Samarra FIP, Foote AD. Kinship clustering within an ecologically diverse killer whale metapopulation. Heredity (Edinb) 2025; 134:109-119. [PMID: 39833275 PMCID: PMC11799346 DOI: 10.1038/s41437-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Metapopulation dynamics can be shaped by foraging ecology, and thus be sensitive to shifts in prey availability. Genotyping 204 North Atlantic killer whales at 1346 loci, we investigated whether spatio-temporal population structuring is linked to prey type and distribution. Using population-based methods (reflecting evolutionary means), we report a widespread metapopulation connected across ecological groups based upon nuclear genome SNPs, yet spatial structuring based upon mitogenome haplotypes. These contrasting patterns of markers with maternal and biparental inheritance are consistent with matrilineal site fidelity and philopatry, and male-mediated gene flow among demes. Connectivity between fish-eating and 'mixed-diet' (eating both fish and mammal prey) killer whales, marks a deviation within a species renowned for its marked structure associated with ecology. However, relatedness estimates suggest distinct spatial clusters, and heterogeneity in recent gene flow between them. The contrasting patterns between inference of structure and inference of relatedness suggest that gene flow has been partially restricted over the past two to three generations (50-70 years). This coincides with the collapse of North Atlantic herring stocks in the late 1960s and the subsequent cessation of their seasonal connectivity. Statistically significant association between diet types and assignment of Icelandic killer whales to relatedness-based clusters indicated limited gene flow was maintained through Icelandic 'mixed-diet' whales when herring-mediated connectivity was diminished. Thus, conservation of dietary variation within this metapopulation is critical to ensure genetic health. Our study highlights the role of resource dynamics and foraging ecology in shaping population structure and emphasises the need for transnational management of this widespread migratory species and its prey.
Collapse
Affiliation(s)
- Chérine D Baumgartner
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Orcestra, Zurich, Switzerland.
| | - Eve Jourdain
- Norwegian Orca Survey, Andenes, Norway
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jan T Laine
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Anders Ruus
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sara B Tavares
- Cetacean Research Program, Fisheries and Oceans, Nanaimo, Canada
| | | | - Filipa I P Samarra
- Westman Islands Research Centre, University of Iceland, Vestmannaeyjar, Iceland
| | - Andrew D Foote
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Manuzzi A, Aguirre-Sarabia I, Díaz-Arce N, Bekkevold D, Jansen T, Gomez-Garrido J, Alioto TS, Gut M, Castonguay M, Sanchez-Maroño S, Álvarez P, Rodriguez-Ezpeleta N. Atlantic mackerel population structure does not support genetically distinct spawning components. OPEN RESEARCH EUROPE 2025; 4:82. [PMID: 39524113 PMCID: PMC11544206 DOI: 10.12688/openreseurope.17365.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 11/16/2024]
Abstract
Background The Atlantic mackerel, Scomber scombrus (Linnaeus, 1758) is a commercially valuable migratory pelagic fish inhabiting the northern Atlantic Ocean and the Mediterranean Sea. Given its highly migratory behaviour for feeding and spawning, several studies have been conducted to assess differentiation among spawning components to better define management units, as well as to investigate possible adaptations to comprehend and predict recent range expansion northwards. Methods Here, the genome of S. scombrus was sequenced and annotated, as an increasing number of population genetic studies have proven the relevance of reference genomes to investigate genomic markers/regions potentially linked to differences at finer scale. Such reference genome was used to map Restriction-site-associated sequencing (RAD-seq) reads for SNP discovery and genotyping in more than 500 samples distributed along the species range. The resulting genotyping tables have been used to perform connectivity and adaptation analyses. Results The assembly of the reference genome for S. scombrus resulted in a genome of 741 Mb. Our population genetic results show that the Atlantic mackerel consist of three previously known genetically isolated units (Northwest Atlantic, Northeast Atlantic, Mediterranean), and provide no evidence for genetically distinct spawning components within the Northwest or Northeast Atlantic. Conclusions Therefore, our findings resolved previous uncertainties by confirming the absence of genetically isolated spawning components in each side of the northern Atlantic, thus rejecting homing behaviour and the need to redefine management boundaries in this species. In addition, no further genetic signs of ongoing adaptation were detected in this species.
Collapse
Affiliation(s)
- Alice Manuzzi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Imanol Aguirre-Sarabia
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Natalia Díaz-Arce
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Dorte Bekkevold
- DTU Aqua, National Institute of Aquatic Resources, Section for Marine Living Resources, Silkeborg, Denmark
| | - Teunis Jansen
- DTU Aqua, National Institute of Aquatic Resources, Section for Marine Living Resources, Silkeborg, Denmark
- GINR, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Jessica Gomez-Garrido
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Tyler S. Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Martin Castonguay
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada, Mont-Joli, Canada
| | - Sonia Sanchez-Maroño
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Paula Álvarez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | |
Collapse
|
24
|
Priyono DS, Rafina N, Arisuryanti T, Lesmana I, Yustian I, Setiawan A. The first complete mitochondrial genome of Sumatran striped rabbit Nesolagus netscheri (Schlegel, 1880), and its phylogenetic relationship with other Leporidae. Sci Rep 2025; 15:2002. [PMID: 39814825 PMCID: PMC11735860 DOI: 10.1038/s41598-025-85212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Nesolagus netscheri, a Sumatran striped rabbit, is one of the rarest rabbits in the Leporidae family, and its genetic information is still limited. This study provides the first mitochondrial genome and molecular systematic characterization of the Sumatran striped rabbit, Nesolagus netscheri, Indonesia's rarest rabbit. It consists of a circular double-stranded DNA of 16,709 bp. It showed that the mitochondrial genome structure of N. netscheri is similar to that of N. timminsi. The mitochondrial genome of N. netscheri contained 22 transfer RNA (tRNA) genes, and all tRNA except for trnS1 showed a characteristic cloverleaf secondary structure. Evidence was found that the atp8 gene of N. netscheri is under positive selection pressure. The phylogenetic analysis shows Leporidae was monophyletic, with Nesolagus at the basal. The study indicates a split between N. netscheri and N. timminsi in the Late Pleistocene around 0.43 million years ago. This research is a fundamental reference for the conservation of the rarest lagomorph species and provides important information for future evolutionary studies in the Leporidae family.
Collapse
Affiliation(s)
- Dwi Sendi Priyono
- Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sinduadi, Mlati,, Sleman, 55281, Special Region of Yogyakarta, Indonesia
| | - Nayla Rafina
- Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sinduadi, Mlati,, Sleman, 55281, Special Region of Yogyakarta, Indonesia
| | - Tuty Arisuryanti
- Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sinduadi, Mlati,, Sleman, 55281, Special Region of Yogyakarta, Indonesia
| | - Indra Lesmana
- Departement of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sinduadi, Mlati,, Sleman, 55281, Special Region of Yogyakarta, Indonesia
| | - Indra Yustian
- Department of Biology, Faculty of Mathematics and Natural Science, University of Sriwijaya, Jalan Raya Prabumulih Km 32, Ogan Ilir, South Sumatera, 30682, Indonesia
| | - Arum Setiawan
- Department of Biology, Faculty of Mathematics and Natural Science, University of Sriwijaya, Jalan Raya Prabumulih Km 32, Ogan Ilir, South Sumatera, 30682, Indonesia.
| |
Collapse
|
25
|
Zhou Y, Wang C, Wang B, Xu D, Zhang X, Ge Y, Jiang S, Tang F, Chen C, Li X, Jian J, You Y. Telomere-to-telomere genome and resequencing of 254 individuals reveal evolution, genomic footprints in Asian icefish, Protosalanx chinensis. Gigascience 2025; 14:giae115. [PMID: 39775841 PMCID: PMC11707609 DOI: 10.1093/gigascience/giae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Asian icefish, Protosalanx chinensis, has undergone extensive colonization in various waters across China for decades due to its ecological and physiological significance as well as its economic importance in the fishery resource. Here, we decoded a telomere-to-telomere (T2T) genome for P. chinensis combining PacBio HiFi long reads and ultra-long ONT (nanopore) reads and Hi-C data. The telomere was identified in both ends of the contig/chromosome. The expanded gene associated with circadian entrainment suggests that P. chinensis may exhibit a high sensitivity to photoperiod. The contracted genes' immune-related families and DNA repair associated with positive selection in P. chinensis suggested the selection pressure during adaptive evolution. The population genetic analysis reported the genetic diversity and genomic footprints in 254 individuals from 8 different locations. The natural seawater samples can be the highest diversity and different from other freshwater and introduced populations. The divergent regions' associated genes were found to be related to the osmotic pressure system, suggesting adaptations to alkalinity and salinity. Thus, the T2T genome and genetic variation can be valuable resources for genomic footprints in P. chinensis, shedding light on its evolution, comparative genomics, and the genetic differences between natural and introduced populations.
Collapse
Affiliation(s)
- Yanfeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chenhe Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xizhao Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - You Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shulun Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fujiang Tang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 1150070, China
| | | | - Xuemei Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 1150070, China
| | - Jianbo Jian
- BGI Genomics, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yang You
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
26
|
Nelson HV, Georges A, Farquharson KA, McLennan EA, DeGabriel JL, Belov K, Hogg CJ. A Genomic-Based Workflow for eDNA Assay Development for a Critically Endangered Turtle, Myuchelys georgesi. Ecol Evol 2025; 15:e70798. [PMID: 39781257 PMCID: PMC11707621 DOI: 10.1002/ece3.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA. In this study, we designed eDNA primers for the critically endangered Bellinger River turtle (Myuchelys georgesi) using a bioinformatically assembled mitochondrial genome (mitogenome) derived from a reference genome. We confirmed the accuracy of this assembled mitogenome by comparing it to a Sanger-sequenced mitogenome of the same species, and no base pair mismatches were detected. Using the bioinformatically extracted mitogenome, we designed two 20 bp primers that target a 152-base-pair-long fragment of the cytochrome oxidase 1 (CO1) gene and a 186-base-pair-long fragment of the cytochrome B (CytB) gene. Both primers were successfully validated in silico, in vitro, and in situ.
Collapse
Affiliation(s)
- Holly V. Nelson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Katherine A. Farquharson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Elspeth A. McLennan
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jane L. DeGabriel
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
27
|
Hauff L, Rasoanaivo NE, Razafindrakoto A, Ravelonjanahary H, Wright PC, Rakotoarivony R, Bergey CM. De Novo Genome Assembly for an Endangered Lemur Using Portable Nanopore Sequencing in Rural Madagascar. Ecol Evol 2025; 15:e70734. [PMID: 39777412 PMCID: PMC11705420 DOI: 10.1002/ece3.70734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
As one of the most threatened mammalian taxa, lemurs of Madagascar are facing unprecedented anthropogenic pressures. To address conservation imperatives such as this, researchers have increasingly relied on conservation genomics to identify populations of particular concern. However, many of these genomic approaches necessitate high-quality genomes. While the advent of next-generation sequencing technologies and the resulting reduction in associated costs have led to the proliferation of genomic data and high-quality reference genomes, global discrepancies in genomic sequencing capabilities often result in biological samples from biodiverse host countries being exported to facilities in the Global North, creating inequalities in access and training within genomic research. Here, we present the first published reference genome for the endangered red-fronted brown lemur (Eulemur rufifrons) from sequencing efforts conducted entirely within the host country using portable Oxford Nanopore sequencing. Using an archived E. rufifrons specimen, we conducted long-read, nanopore sequencing at the Centre ValBio Research Station near Ranomafana National Park, in rural Madagascar, generating over 750 Gb of sequencing data from 10 MinION flow cells. Exclusively using this long-read data, we assembled 2.157 gigabase, 2980-contig nuclear assembly with an N50 of 101.6 Mb and a 17,108 bp mitogenome. The nuclear assembly had 30× average coverage and was comparable in completeness to other primate reference genomes, with a 96.1% BUSCO completeness score for primate-specific genes. As the first published reference genome for E. rufifrons and the only annotated genome available for the speciose Eulemur genus, this resource will prove vital for conservation genomic studies while our efforts exhibit the potential of this protocol to address research inequalities and build genomic capacity.
Collapse
Affiliation(s)
- Lindsey Hauff
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Center for Human Evolutionary StudiesRutgers UniversityNew BrunswickNew JerseyUSA
- Human Genetics Institute of New JerseyPiscatawayNew JerseyUSA
| | - Noa Elosmie Rasoanaivo
- Department of Zoology and Animal BiodiversityUniversity of AntananarivoAntananarivoMadagascar
| | | | | | - Patricia C. Wright
- Centre ValBio, Ranomafana National ParkIfanadianaMadagascar
- Department of AnthropologyStony Brook UniversityStony BrookNew YorkUSA
| | - Rindra Rakotoarivony
- Department of Biological Anthropology and Sustainable DevelopmentUniversity of AntananarivoAntananarivoMadagascar
| | - Christina M. Bergey
- Center for Human Evolutionary StudiesRutgers UniversityNew BrunswickNew JerseyUSA
- Human Genetics Institute of New JerseyPiscatawayNew JerseyUSA
- Department of GeneticsRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
28
|
Mogano RR, Mpofu TJ, Mtileni B, Hadebe K. South African indigenous chickens' genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poult Sci 2025; 104:104508. [PMID: 39657468 PMCID: PMC11681890 DOI: 10.1016/j.psj.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Selection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits. The lack of knowledge about genetic diversity and genetic mechanisms underlying adaptive variants may compromise the goal of conserving indigenous chicken breeds. The main insights of the study are that indigenous chickens are highly diversified, and environmental factors play a key role in enabling chicken adaptation and distribution. Genomic and spatial technologies have made it possible to explore the genetic structure and fully comprehend the mechanism underlying the local adaptation of indigenous chickens. These technologies can aid in creating programs that enhance productivity and promote climate-resilient breeds. This review explores the impact of natural selection on indigenous chicken, genetic diversity, population size, and the advancement of technologies in understanding local adaptation drivers. In conclusion, this review highlights the importance of studying the habitats and how this will guide in conserving local breeds in their intended production environment.
Collapse
Affiliation(s)
- Reneilwe Rose Mogano
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa.
| |
Collapse
|
29
|
Hoban S, Hvilsom C, Aissi A, Aleixo A, Bélanger J, Biala K, Ekblom R, Fedorca A, Funk WC, Goncalves AL, Gonzalez A, Heuertz M, Hughes A, Ishihama F, Stroil BK, Laikre L, McGowan PJK, Millette KL, O'Brien D, Paz-Vinas I, Rincón-Parra VJ, Robuchon M, Rodríguez JP, Rodríguez-Morales MA, Segelbacher G, Straza TRA, Susanti R, Tshidada N, Vilaça ST, da Silva JM. How can biodiversity strategy and action plans incorporate genetic diversity and align with global commitments? Bioscience 2025; 75:47-60. [PMID: 39911160 PMCID: PMC11791525 DOI: 10.1093/biosci/biae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 02/07/2025] Open
Abstract
National, subnational, and supranational entities are creating biodiversity strategy and action plans (BSAPs) to develop concrete commitments and actions to curb biodiversity loss, meet international obligations, and achieve a society in harmony with nature. In light of policymakers' increasing recognition of genetic diversity in species and ecosystem adaptation and resilience, this article provides an overview of how BSAPs can incorporate species' genetic diversity. We focus on three areas: setting targets; committing to actions, policies, and programs; and monitoring and reporting. Drawing from 21 recent BSAPs, we provide examples of policies, knowledge, projects, capacity building, and more. We aim to enable and inspire specific and ambitious BSAPs and have put forward 10 key suggestions mapped to the policy cycle. Together, scientists and policymakers can translate high level commitments, such as the Convention on Biological Diversity's Kunming-Montreal Global Biodiversity Framework, into concrete nationally relevant targets, actions and policies, and monitoring and reporting mechanisms.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, Colorado State University, Fort Collins, Colorado, United States
| | | | - Abdeldjalil Aissi
- LAPAPEZA, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna, Algeria
| | | | - Julie Bélanger
- Office of Climate Change, Biodiversity and Environment, Food and Agriculture Organization, United Nations, Rome, Italy
| | | | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Stockholm, Sweden
| | - Ancuta Fedorca
- National Institute for Research and Development, Forestry Marin Dracea, Department of Silviculture, Transilvania University, Brasov, Romania
| | - W Chris Funk
- Colorado State University, Fort Collins, Colorado, United States
- CSU Global Biodiversity Center
| | - Alejandra Lorena Goncalves
- National University of Misiones, National Council of Scientific and Technical Research, Institute of Subtropical Biology, Posadas, Argentina
| | - Andrew Gonzalez
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | | | - Alice Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Fumiko Ishihama
- National Institute for Environmental Studies, Ibaraki, Japan
| | - Belma Kalamujic Stroil
- University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Society for Genetic Conservation of B&H Endemic and Autochthonous Resources GENOFOND, Sarajevo, Bosnia and Herzegovina
| | - Linda Laikre
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philip J K McGowan
- Newcastle University, Newcastle upon Tyne, England, United Kingdom
- IUCN Species Survival Commission Global Biodiversity Framework Task Force
| | - Katie L Millette
- Group on Earth Observations Biodiversity Observation Network based, McGill University, Montreal, Quebec, Canada
| | - David O'Brien
- NatureScot, Inverness, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ivan Paz-Vinas
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, Villeurbanne, France
| | | | - Marine Robuchon
- Joint Research Centre of the European Commission, Ispra, Italy
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission
- Center for Ecology of the Venezuelan Institute for Scientific Investigations, Caracas, Venezuela
| | | | - Gernot Segelbacher
- Chair of Wildlife Ecology and Management, University Freiburg, Freiburg, Germany
| | - Tiffany R A Straza
- Secretariat of the Pacific Regional Environment Programme, Apia, Samoa
- United Nations Educational, Scientific, and Cultural Organization, Paris, France
| | - Ruliyana Susanti
- Research Center for Ecology and Ethnobiology
- Secretariat of Scientific Authority for Biodiversity, National Research and Innovation Agency, Indonesia
| | | | | | - Jessica M da Silva
- South African National Biodiversity Institute, Cape Town, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
30
|
Croll JC, Caswell H. Family Matters: Linking Population Growth, Kin Interactions, and African Elephant Social Groups. Am Nat 2025; 205:E1-E15. [PMID: 39718796 DOI: 10.1086/733181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractIn many species, individuals are embedded in a network of kin with whom they interact. Interactions between kin can affect survival and fertility rates and thus the life history of individuals. These interactions indirectly affect both the network of kin and the dynamics of the population. In this way, a nonlinear feedback between the kin network and individual vital rates emerges. We describe a framework for integrating these kin interactions into a matrix model by linking the individual kin network to a matrix model. We demonstrate the use of this framework for African elephant populations under varying poaching pressure. For this example, we incorporate effects of the maternal presence and matriarchal age on juvenile survival and effects of the presence of a sister on young female fecundity. We find that the feedback resulting from the interactions between family members shifts and reduces the expected kin network. The reduction in family size and structure severely reduces the positive effects of family interactions, leading to an additional decrease in population growth rate on top of the direct decrease due to the additional mortality. Our analysis provides a framework that can be applied to a wide range of social species.
Collapse
|
31
|
DeCandia AL, Lu J, Hamblen EE, Brenner LJ, King JL, Gagorik CN, Schamel JT, Baker SS, Ferrara FJ, Booker M, Bridges A, Carrasco C, vonHoldt BM, Koepfli KP, Maldonado JE. Phylosymbiosis and Elevated Cancer Risk in Genetically Depauperate Channel Island Foxes. Mol Ecol 2025; 34:e17610. [PMID: 39655703 DOI: 10.1111/mec.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis). The gut microbiome provided evidence of phylosymbiosis by reflecting the host phylogeny, geographic proximity, history of island colonisation and contemporary ecological differences, whereas the otic microbiome primarily reflected geography and disease. Santa Catalina Island foxes are uniquely predisposed to ceruminous gland tumours following infection with Otodectes cynotis ear mites, while San Clemente and San Nicolas Island foxes exhibit ear mite infections without evidence of tumours. Comparative analyses of otic microbiomes revealed that mite-infected Santa Catalina and San Clemente Island foxes exhibited reduced bacterial diversity, skewed abundance towards the opportunistic pathogen Staphylococcus pseudintermedius and disrupted microbial community networks. However, Santa Catalina Island foxes uniquely harboured Fusobacterium and Prevotella bacteria as potential keystone taxa. These bacteria have previously been associated with colorectal cancer and may predispose Santa Catalina Island foxes to an elevated cancer risk. In contrast, mite-infected San Nicolas Island foxes maintained high bacterial diversity and robust microbial community networks, suggesting that they harbour more resilient microbiomes. Considered together, our results highlight the diverse eco-evolutionary factors influencing commensal microbial communities and their hosts and underscore how the microbiome can contribute to disease outcomes.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jasmine Lu
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | - Julie L King
- Catalina Island Conservancy, Avalon, California, USA
- Santa Clara Valley Habitat Agency, Morgan Hill, California, USA
| | - Calypso N Gagorik
- Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | - Francesca J Ferrara
- Environmental Division - Environmental Planning and Conservation Branch, Naval Base Ventura County, Point Mugu, California, USA
| | - Melissa Booker
- Environmental Division, Naval Base Coronado, San Diego, California, USA
| | - Andrew Bridges
- Institute for Wildlife Studies, San Diego, California, USA
| | - Cesar Carrasco
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, Virginia, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
32
|
Lu S, Liu L, Lei W, Wang D, Zhu H, Lai Q, Ma L, Ru D. Cryptic divergence in and evolutionary dynamics of endangered hybrid Picea brachytyla sensu stricto in the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1202. [PMID: 39701948 DOI: 10.1186/s12870-024-05851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The visual similarities observed across various plant groups often conceal underlying genetic distinctions. This occurrence, known as cryptic diversity, underscores the key importance of identifying and understanding cryptic intraspecific evolutionary lineages in evolutionary ecology and conservation biology. RESULTS In this study, we conducted transcriptome analysis of 81 individuals from 18 natural populations of a northern lineage of Picea brachytyla sensu stricto that is endemic to the Qinghai-Tibet Plateau. Our analysis revealed the presence of two distinct local lineages, emerging approximately 444.8 thousand years ago (kya), within this endangered species. The divergence event aligns well with the geographic and climatic oscillations that occurred across the distributional range during the Mid-Pleistocene epoch. Additionally, we identified numerous environmentally correlated gene variants, as well as many other genes showing signals of positive selection across the genome. These factors likely contributed to the persistence and adaptation of the two distinct local lineages. CONCLUSIONS Our findings shed light on the highly dynamic evolutionary processes underlying the remarkably similar phenotypes of the two lineages of this endangered species. Importantly, these results enhance our understanding of the evolutionary past for this and for other endangered species with similar histories, and also provide guidance for the development of conservation plans.
Collapse
Affiliation(s)
- Shengming Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qing Lai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Liru Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
33
|
Stuart KC, Tan HZ, Whibley A, Bailey S, Brekke P, Ewen JG, Patel S, Santure AW. Both Structural Variant and Single Nucleotide Polymorphism Load Impact Lifetime Fitness in a Threatened Bird Species. Mol Ecol 2024:e17631. [PMID: 39690519 DOI: 10.1111/mec.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
The field of conservation genomics is becoming increasingly interested in whether, and how, structural variant (SV) genotype information can be leveraged in the management of threatened species. The functional consequences of SVs are more complex than for single nucleotide polymorphisms (SNPs), as SVs typically impact a larger proportion of the genome due to their size and thus may be more likely to contribute to load. While the impacts of SV-specific genetic load may be less consequential for large populations, the interplay between weakened selection and stochastic processes means that smaller populations, such as those of the threatened Aotearoa hihi/New Zealand stitchbird (Notiomystis cincta), may harbour a high SV load. Hihi were once confined to a single remnant population, but have been reestablished into six sanctuaries and reserves, often via secondary bottlenecks, resulting in low genetic diversity, low adaptive potential, and inbreeding depression. In this study, we use whole genome resequencing of 30 individuals from the Tiritiri Matangi population to identify the nature and distribution of both SNPs and SVs within this small avian population. We find that SNP and SV individual mutation load is only moderately correlated, likely because SVs arise in regions of high recombination and that are less evolutionarily conserved. Finally, we leverage a long-term monitoring dataset of pedigree and fitness data to assess the impact of SNP and SV mutation loads on individual fitness, and find that SNP and SV realised load had similar negative correlations with lifetime fitness. However, of the masked load metrics, only SVs had a positive significant correlation with lifetime fitness, indicating that masking of deleterious alleles may be more important for SVs than for SNPs. The results of this study indicate that only examining SNPs neglects important aspects of intra-specific variation and that studying SVs has direct implications for linking genetic diversity and genomic health to inform management decisions.
Collapse
Affiliation(s)
- Katarina C Stuart
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- University of new South Wales, Sydney, New South Wales, Australia
| | - Hui Zhen Tan
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Bragato Research Institute, Blenheim, Aotearoa, New Zealand
| | - Sarah Bailey
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Selina Patel
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Anna W Santure
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
34
|
Premachandra HKA, Piza-Roca C, Casteriano A, Higgins DP, Hohwieler K, Powell D, Cristescu RH. Advancements in noninvasive koala monitoring through combining Chlamydia detection with a targeted koala genotyping assay. Sci Rep 2024; 14:30371. [PMID: 39638795 PMCID: PMC11621440 DOI: 10.1038/s41598-024-76873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Wildlife diseases are major players in local and global extinctions. Effective disease surveillance, management and conservation strategies require accurate estimates of pathogen prevalence. Yet pathogen detection in wild animals remains challenging. Current gold standards often require samples collected through veterinary examination, but this method is costly, intensive, invasive, and requires specialised staff and equipment. Collection of non-invasive samples, such as scats, is an effective monitoring tool which can be deployed at large scale, as scats contain DNA of both host and pathogens. The koala (Phascolarctos cinereus) is listed as 'endangered' under the EPBC Act 1999, with chlamydial disease representing a major threat. Here, we present a new approach that combines restriction-enzyme associated sequencing and targeted-sequence-capture genotyping, namely DArTcap, to detect Chlamydia pecorum in koala scats. We found this method has similar accuracy to current gold standards (qPCR of swab samples), with a sensitivity of 91.7% and a specificity of 100%. This method can be incorporated into existing koala genetic studies using marker panels, where population attributes can be estimated alongside C. pecorum presence, using the same scat samples, with the option to add further markers of interest. Such a one-stop-shop panel would considerably reduce processing times and cost.
Collapse
Affiliation(s)
- H K A Premachandra
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Carme Piza-Roca
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Andrea Casteriano
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Damien P Higgins
- Faculty of Science/ Sydney School of Veterinary Science, University of Sydney, NSW, 2006, Camperdown, Australia
| | - Katrin Hohwieler
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Daniel Powell
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia
| | - Romane H Cristescu
- University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
35
|
Montana L, Bringloe TT, Bourret A, Sauvé C, Mosnier A, Ferguson SH, Postma L, Lesage V, Watt CA, Hammill MO, Parent GJ. Reduced Representation and Whole-Genome Sequencing Approaches Highlight Beluga Whale Populations Associated to Eastern Canada Summer Aggregations. Evol Appl 2024; 17:e70058. [PMID: 39703673 PMCID: PMC11655672 DOI: 10.1111/eva.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Effective conservation strategies inherently depend on preserving populations, which in turn requires accurate tools for their detection. Beluga whales (Delphinapterus leucas) inhabit the circumpolar Arctic and form discrete summer aggregations. Previous genetic studies using mitochondrial and microsatellite loci have delineated distinct populations associated to summer aggregations but the extent of dispersal and interbreeding among these populations remains largely unknown. Such information is essential for the conservation of populations in Canada as some are endangered and harvested for subsistence by Inuit communities. Here, we used reduced representation and whole-genome sequencing approaches to characterize population structure of beluga whales in eastern Canada and examine admixture between populations. A total of 905 beluga whales sampled between 1989 and 2021 were genotyped. Six main genomic clusters, with potential subclusters, were identified using multiple proxies for population structure. Most of the six main genomic clusters were consistent with previously identified populations, except in southeast Hudson Bay where two clusters were identified. Beluga summer aggregations may consequently be comprised of more than one distinct population. A low number of dispersers were identified between summer aggregations and limited interbreeding was detected between the six genomic clusters. Our work highlights the value of genomic approaches to improve our understanding of population structure and reproductive behavior in beluga whales, offering insights applicable to other cetacean species of conservation concern. An expansion of the geographical scope and increase in number of genotyped individuals will, however, be needed to improve the characterization of the finer scale structure and of the extent of admixture between populations.
Collapse
Affiliation(s)
- Luca Montana
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Trevor T. Bringloe
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Audrey Bourret
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Caroline Sauvé
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Arnaud Mosnier
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Steven H. Ferguson
- Freshwater InstituteFisheries and Oceans CanadaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Lianne Postma
- Freshwater InstituteFisheries and Oceans CanadaWinnipegManitobaCanada
| | - Véronique Lesage
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Cortney A. Watt
- Freshwater InstituteFisheries and Oceans CanadaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Mike O. Hammill
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| | - Geneviève J. Parent
- Maurice Lamontagne InstituteFisheries and Oceans CanadaMont‐JoliQuebecCanada
| |
Collapse
|
36
|
Lévêque A, Duputié A, Vignon V, Duez F, Godé C, Mazoyer C, Arnaud J. Levels and Spatial Patterns of Effective Population Sizes in the Southern Damselfly ( Coenagrion mercuriale): On the Need to Carefully Interpret Single-Point and Temporal Estimations to Set Conservation Guidelines. Evol Appl 2024; 17:e70062. [PMID: 39720624 PMCID: PMC11667679 DOI: 10.1111/eva.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
The effective population size (N e) is a key parameter in conservation and evolutionary biology, reflecting the strength of genetic drift and inbreeding. Although demographic estimations of N e are logistically and time-consuming, genetic methods have become more widely used due to increasing data availability. Nonetheless, accurately estimating N e remains challenging, with few studies comparing N e estimates across molecular markers types and estimators such as single-sample methods based on linkage disequilibrium or sibship analyses versus methods based on temporal variance in allele frequencies. This study aims at bridging this gap by analysing single-sample and temporally spaced populations in the southern damselfly (Coenagrion mercuriale), a bioindicator Odonata species of conservation concern found in southwestern Europe's freshwater stream networks. A total of 77 local populations were sampled from a semi-urbanised area located in eastern France near Strasbourg city, yielding 2842 individuals that were genotyped with microsatellites and 958 of which were also genotyped for 2092 SNPs. Spatial genetic structure was stable over time, suggesting porosity between alternate-year cohorts. When accounting for spatial genetic structure, single-sample and temporal estimations of N e were consistent for each set of molecular markers. Biologically meaningful results were obtained when the effect of migration was minimising by considering metapopulation N e estimates based on the level of genetic differentiation and population boundaries. In terms of applied conservation and management, most depicted metapopulations displayed large N e, indicating no immediate need for conservation measures to mitigate anthropogenic pressures, provided that a continuous suitable freshwater network is maintained. However, urbanisation negatively impacted N e levels in populations close to Strasbourg city. Because N e is used to inform conservation decisions, caution is crucial in interpreting N e estimates, especially in continuously distributed populations undergoing migration. Altogether, our study highlights the challenge of obtaining robust N e estimates and the necessity of careful interpretation to set relevant conservation guidelines.
Collapse
Affiliation(s)
- Agathe Lévêque
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Vincent Vignon
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
- ALKIOSAvignonFrance
| | - Fabien Duez
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | | | | |
Collapse
|
37
|
Orton RW, Hamilton PK, Frasier TR. Genomic Evidence for the Purging of Deleterious Genetic Variation in the Endangered North Atlantic Right Whale. Evol Appl 2024; 17:e70055. [PMID: 39717435 PMCID: PMC11665784 DOI: 10.1111/eva.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of Balaenidae whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s. Unlike bowhead (BH) and Southern right whales (SRW), which show signs of recent recovery, reproductive rates of the endangered North Atlantic right whale (NARW) remain lower than expected. We show that the NARW is currently marked by low genetic diversity, historical inbreeding, and a high mutation load. Still, we reveal evidence that genetic purging has reduced the frequency of highly deleterious alleles in NARW, which could increase chances of future population recovery. We also identify a suite of mutations putatively linked to congenital defects that occur at high frequencies in nulliparous NARW females but are rare in NARW with high reproductive success. These same mutations are nearly absent in BH and SRW in this study, suggesting that the purging of key variants may shape the probability of population recovery. As anthropogenic disturbances continue to reduce the sizes of many populations in nature, resolving the links between population dynamics and mutation load could become increasingly important.
Collapse
Affiliation(s)
- Richard W. Orton
- Department of BiologySaint Mary's UniversityHalifaxNova ScotiaCanada
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean LifeNew England AquariumBostonMassachusettsUSA
| | | |
Collapse
|
38
|
Grobler DL, Klein JD, Dicken ML, Mmonwa K, Soekoe M, van Staden M, Hagen SB, Maduna SN, Bester‐van der Merwe AE. Seascape Genomics of the Smooth Hammerhead Shark Sphyrna zygaena Reveals Regional Adaptive Clinal Variation. Ecol Evol 2024; 14:e70644. [PMID: 39669504 PMCID: PMC11635309 DOI: 10.1002/ece3.70644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Globally, hammerhead sharks have experienced severe declines owing to continued overexploitation and anthropogenic change. The smooth hammerhead shark Sphyrna zygaena remains understudied compared to other members of the family Sphyrnidae. Despite its vulnerable status, a comprehensive understanding of its genetic landscape remains lacking in many regions worldwide. The present study aimed to conduct a fine-scale genomic assessment of Sphyrna zygaena within the highly dynamic marine environment of South Africa's coastline, using thousands of single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (3RAD). A combination of differentiation-based outlier detection methods and genotype-environment association (GEA) analysis was employed in Sphyrna zygaena. Subsequent assessments of putatively adaptive loci revealed a distinctive south to east genetic cline. Among these, notable correlations between adaptive variation and sea-surface dissolved oxygen and salinity were evident. Conversely, analysis of 111,243 neutral SNP markers revealed a lack of regional population differentiation, a finding that remained consistent across various analytical approaches. These results provide evidence for the presence of differential selection pressures within a limited spatial range, despite high gene flow implied by the selectively neutral dataset. This study offers notable insights regarding the potential impacts of genomic variation in response to fluctuating environmental conditions in the circumglobally distributed Sphyrna zygaena.
Collapse
Affiliation(s)
- D. L. Grobler
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - J. D. Klein
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - M. L. Dicken
- KwaZulu‐Natal Sharks BoardUmhlanga RocksKwaZulu‐NatalSouth Africa
- Institute for Coastal and Marine Research (CMR), ocean Sciences CampusNelson Mandela UniversityGqeberhaSouth Africa
| | - K. Mmonwa
- KwaZulu‐Natal Sharks BoardUmhlanga RocksKwaZulu‐NatalSouth Africa
- The World Wild Fund for Nature (WWF) South Africa, Newlands OfficeNewlands, Cape TownSouth Africa
| | - M. Soekoe
- Division of Marine ResearchReel Science CoalitionCape TownSouth Africa
| | - M. van Staden
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - S. B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research – NIBIOSvanvikNorway
| | - S. N. Maduna
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research – NIBIOSvanvikNorway
| | - A. E. Bester‐van der Merwe
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
39
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1522-1535. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
40
|
Martin EJ, Speak SA, Urban L, Morales HE, van Oosterhout C. Sonification of Genomic Data to Represent Genetic Load in Zoo Populations. Zoo Biol 2024; 43:513-519. [PMID: 39228291 PMCID: PMC11624621 DOI: 10.1002/zoo.21859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Maintaining a diverse gene pool is important in the captive management of zoo populations, especially in endangered species such as the pink pigeon (Nesoenas mayeri). However, due to the limited number of breeding individuals and relaxed natural selection, the loss of variation and accumulation of harmful variants is inevitable. Inbreeding results in a loss of fitness (i.e., inbreeding depression), principally because related parents are more likely to transmit a copy of the same recessive deleterious genetic variant to their offspring. Genomics-informed captive breeding can manage harmful variants by artificial selection, reducing the genetic load by avoiding the inheritance of two copies of the same harmful variant. To explain this concept in an interactive way to zoo visitors, we developed a sonification game to represent the fitness impacts of harmful variants by detuning notes in a familiar musical melody (i.e., Beethoven's Für Elise). Conceptually, zoo visitors play a game aiming to create the most optimal pink pigeon offspring in terms of inbreeding depression. They select virtual crosses between pink pigeon individuals and listen for the detuning of the melody, which represents the realised load of the resultant offspring. Here we present the sonification algorithm and the results of an online survey to see whether participants could identify the most and least optimal offspring from three potential pink pigeon offspring. Of our 98 respondents, 85 (86.7%) correctly identified the least optimal offspring, 73 (74.5%) correctly identified the most optimal, and 62 (63.3%) identified both the most and least optimal offspring using only the sonification.
Collapse
Affiliation(s)
- Edward J. Martin
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Samuel A. Speak
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
- Natural History MuseumLondonUK
- North of England Zoological SocietyChester ZooChesterUK
| | - Lara Urban
- Helmholtz AIHelmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer CampusHelmholtz Zentrum MuenchenMunichGermany
- School of Life SciencesTechnical University of MunichFreisingGermany
| | - Hernán E. Morales
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
41
|
Mendoza-Maya E, Giles-Pérez GI, Vargas-Hernández JJ, Sáenz-Romero C, Martínez-Trujillo M, de Los Angeles Beltrán-Nambo M, Hernández-Díaz JC, Prieto-Ruíz JÁ, Jaramillo-Correa JP, Wehenkel C. Evolutionary drivers of reproductive fitness in two endangered forest trees. THE NEW PHYTOLOGIST 2024; 244:1086-1100. [PMID: 39187985 DOI: 10.1111/nph.20073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.
Collapse
Affiliation(s)
- Eduardo Mendoza-Maya
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, 34000, Durango, Mexico
| | - Gustavo Ibrahim Giles-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - J Jesús Vargas-Hernández
- Postgrado en Ciencias Forestales, Colegio de Postgraduados, Montecillo, Texcoco, 56264, Estado de México, Mexico
| | - Cuauhtémoc Sáenz-Romero
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58330, Michoacán, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Michoacán, Mexico
| | | | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| | - Juan P Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| |
Collapse
|
42
|
Marrero P, Fregel R, Richardson DS. Inter and intra-island genetic structure and differentiation of the endemic Bolle's Laurel Pigeon (Columba bollii) in the Canary archipelago. ZOOLOGY 2024; 167:126209. [PMID: 39303381 DOI: 10.1016/j.zool.2024.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Islands provide excellent settings for studying the evolutionary history of species, since their geographic isolation and relatively small size limit gene flow between populations, and promote divergence and speciation. The endemic Bolle's Laurel Pigeon Columba bollii is an arboreal frugivorous bird species distributed on laurel forests in four islands of the Canary archipelago. To elucidate the population genetics, we genotyped ten microsatellite loci using DNA obtained from non-invasive samples collected across practically all laurel forest remnants, and subsequently grouped into eight sampling sites. Analyses including F-statistics, Bayesian clustering approaches, isolation by distance tests and population graph topologies, were used to infer the genetic diversity and the population differentiation within and among insular populations. Additionally, we evaluated the effect of null alleles on data analysis. Low genetic diversity was found in all populations of Bolle's Laurel Pigeon, with no significant differences in diversity among them. However, significant genetic differentiation was detected among all populations, with pigeons from La Palma and El Hierro exhibiting the closest affinity. Bayesian clustering supported population separation between islands, and also detected fine-scale structure within the Tenerife and La Gomera populations. Our results suggest that, despite columbids have a high movement ability, they can show signature of genetic divergence among populations, particularly on oceanic islands. Geological history of the islands and distribution range of habitats could have close influence on the evolutionary trajectories of these birds. This approach can provide practical tools to implement appropriate conservation measures for range-restricted species and their habitat.
Collapse
Affiliation(s)
- Patricia Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Island Ecology and Evolution Research Group, La Laguna, Tenerife, Canary Islands, Spain; School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Rosa Fregel
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
43
|
Zhu X, Wang J, Chen H, Kang M. Lineage Differentiation and Genomic Vulnerability in a Relict Tree From Subtropical Forests. Evol Appl 2024; 17:e70033. [PMID: 39494192 PMCID: PMC11530410 DOI: 10.1111/eva.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The subtropical forests of East Asia are renowned for their high plant diversity, particularly the abundance of ancient relict species. However, both the evolutionary history of these relict species and their capacity for resilience in the face of impending climatic changes remain unclear. Using whole-genome resequencing data, we investigated the lineage differentiation and demographic history of the relict and endangered tree, Bretschneidera sinensis (Akaniaceae). We employed a combination of population genomic and landscape genomic approaches to evaluate variation in mutation load and genomic offset, aiming to predict how different populations may respond to climate change. Our analysis revealed a profound genomic divergence between the East and West lineages, likely as the result of recurrent bottlenecks due to climatic fluctuations during the glacial period. Furthermore, we identified several genes potentially linked to growth characteristics and hypoxia response that had been subjected to positive selection during the lineage differentiation. Our assessment of genomic vulnerability uncovered a significantly higher mutation load and genomic offset in the edge populations of B. sinensis compared to their core counterparts. This implies that the edge populations are likely to experience the most significant impact from the predicted climate conditions. Overall, our research sheds light on the historical lineage differentiation and contemporary genomic vulnerability of B. sinensis. Broadening our understanding of the speciation history and future resilience of relict and endangered species such as B. sinensis, is crucial in developing effective conservation strategies in anticipation of future climatic changes.
Collapse
Affiliation(s)
- Xian‐Liang Zhu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
| | - Hong‐Feng Chen
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern ChinaGuangzhouChina
- South China National Botanical GardenGuangzhouChina
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
44
|
Yin K, Chung MY, Lan B, Du FK, Chung MG. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol 2024; 25:279. [PMID: 39449103 PMCID: PMC11515576 DOI: 10.1186/s13059-024-03399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous plant taxa are threatened by habitat destruction or overexploitation. To overcome these threats, new methods are urgently needed for rescuing threatened and endangered plant species. Here, we review the genetic consequences of threats to species populations. We highlight potential advantages of genome editing for mitigating negative effects caused by new pathogens and pests or climate change where other approaches have failed. We propose solutions to protect threatened plants using genome editing technology unless absolutely necessary. We further discuss the challenges associated with genome editing in plant conservation to mitigate the decline of plant diversity.
Collapse
Affiliation(s)
- Kangquan Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Bo Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Myong Gi Chung
- Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
45
|
Zou S, Hu R, Liang S, Lu T, Kang D, Li D. Assessment of health risk of antibiotics resistance genes from human disturbed habitat to wild animals: Metagenomic insights into availability and functional changes of gut microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117117. [PMID: 39342753 DOI: 10.1016/j.ecoenv.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Not all antibiotic resistance genes (ARGs) pose an ecological risk to their host animals. A standard should be developed to study which types of ARGs posed an ecological risk to wild animals under human disturbances (HDs). In this study, the golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel species. According to the animals-associated enrichment, mobility, and pathogenicity, the ARGs in habitat of sentinel species were divided into four levels. If the mobile and pathogenic ARGs that could be collinear with the metagenome-assembled genome (MAGs) in the gut of the sentinel species, the ARGs were defined as Rank I ARGs and they were considered to have ecological risk to sentinel species. Functional genes in the MAGs that collinear with the Rank I ARGs were used to predict the health risks of sentinel species. The ecological risk to sentinel species was present in 0.158 % of the ARGs-contigs in the habitat. Cultivation and villages, but not grazing, agriculture and ecotourism, increased the ecological risk of the ARGs to wild animals, The ability of gut microbiome to acquire mobile and pathogenic ARGs increased, as did the collinear functional genes, and the health risks of the wild animals also enhanced by the disturbances of cultivation and villages. Cultivation and villages increased the nutrient content of the soil, and they had a positive effect on the ecological risk of Rank I ARGs by affecting the mobile genetic elements (MGEs), microbiome and the resistant group in the habitat, which was why the cultivation and villages increased the health risks of wild animals. We proposed that cultivation and living should be controlled, while grazing, agriculture and ecotourism could be developed in nature reserves of wild animals, but the nutrients in the wild animals' habitat should be monitored.
Collapse
Affiliation(s)
- Shuzhen Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Key Laboratory of Conservation Biology of Rhinopithecus roxellana at China West Normal University of Sichuan Province, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Rongpan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Sumei Liang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Tan Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Di Kang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Science and Technology Department of Sichuan Province, Chengdu, China
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Key Laboratory of Conservation Biology of Rhinopithecus roxellana at China West Normal University of Sichuan Province, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Science and Technology Department of Sichuan Province, Chengdu, China.
| |
Collapse
|
46
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Linck EB, Cadena CD. A Latitudinal Gradient of Reference Genomes. Mol Ecol 2024:e17551. [PMID: 39400919 DOI: 10.1111/mec.17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Global inequality rooted in legacies of colonialism and uneven development can lead to systematic biases in scientific knowledge. In ecology and evolutionary biology, findings, funding and research effort are disproportionately concentrated at high latitudes, while biological diversity is concentrated at low latitudes. This discrepancy may have a particular influence in fields like phylogeography, molecular ecology and conservation genetics, where the rise of genomics has increased the cost and technical expertise required to apply state-of-the-art methods. Here, we ask whether a fundamental biogeographic pattern-the latitudinal gradient of species richness in tetrapods-is reflected in the available reference genomes, an important data resource for various applications of molecular tools for biodiversity research and conservation. We also ask whether sequencing approaches differ between the Global South and Global North, reviewing the last 5 years of conservation genetics research in four leading journals. We find that extant reference genomes are scarce relative to species richness at low latitudes and that reduced representation and whole-genome sequencing are disproportionately applied to taxa in the Global North. We conclude with recommendations to close this gap and improve international collaborations in biodiversity genomics.
Collapse
Affiliation(s)
- Ethan B Linck
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | |
Collapse
|
48
|
Myers BM, Stokes DC, Preston KL, Fisher RN, Vandergast AG. Quantification of threats to bats at localized spatial scales for conservation and management. PLoS One 2024; 19:e0310812. [PMID: 39383128 PMCID: PMC11463755 DOI: 10.1371/journal.pone.0310812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
In a rapidly changing world, where species conservation needs vary by local habitat, concentrated conservation efforts at small spatial scales can be critical. Bats provide an array of value to the ecosystems they inhabit; many bat species are also of conservation concern. San Diego County, California, contains 22 of the 41 bat species that occur in the United States, 16 of which are on conservation watchlists. Thus, management of bat communities in San Diego County is a pressing need. Because bats exploit vast areas of the landscape and historical sampling strategies have shifted over time, a standardized way of prioritizing areas of the landscape for management would provide an integral asset to bat conservation. We leveraged long-term bat community survey data from sampling areas across San Diego County to prioritize areas with the most management need. We calculated two types of scores: species scores and threat scores. Species scores incorporated richness and conservation status, and threat scores included landscape level threats that bats could encounter. We found that urbanization, the presence of artificial lights, and areas sampled on unconserved land were all significantly associated with decreases in species richness. Further, using species and threat scores, each sampling area was placed into one of four conservation categories, in order from greatest to least conservation need, ranging from highest priority (high species score, high threat score) to lowest (low species score, low threat score). Additionally, we focused on sampling areas in which Townsend's big-eared bat (Corynorhinus townsendii) and/or pallid bat (Antrozous pallidus) occurred. These two species are of exceptional conservation concern in San Diego County and across the western United States. We identified urbanization, the presence of artificial lights, and areas sampled on unconserved land as threats that were all significantly associated with the absence of Townsend's big-eared bat, but not pallid bat. The strategy, methodology, and solutions proposed in our study should assist bat conservation and management efforts wherever bats occur, and can be extended to other species that require conservation attention.
Collapse
Affiliation(s)
- Brian M. Myers
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
- Department of Biology, Eastern Oregon University, One University Boulevard, La Grande, Oregon, United States of America
| | - Drew C. Stokes
- San Diego Natural History Museum, San Diego, California, United States of America
| | - Kristine L. Preston
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| | - Robert N. Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| | - Amy G. Vandergast
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| |
Collapse
|
49
|
Hermosilla-Albala N, Silva FE, Cuadros-Espinoza S, Fontsere C, Valenzuela-Seba A, Pawar H, Gut M, Kelley JL, Ruibal-Puertas S, Alentorn-Moron P, Faella A, Lizano E, Farias I, Hrbek T, Valsecchi J, Gut IG, Rogers J, Farh KKH, Kuderna LFK, Marques-Bonet T, Boubli JP. Whole genomes of Amazonian uakari monkeys reveal complex connectivity and fast differentiation driven by high environmental dynamism. Commun Biol 2024; 7:1283. [PMID: 39379612 PMCID: PMC11461705 DOI: 10.1038/s42003-024-06901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Despite showing the greatest primate diversity on the planet, genomic studies on Amazonian primates show very little representation in the literature. With 48 geolocalized high coverage whole genomes from wild uakari monkeys, we present the first population-level study on platyrrhines using whole genome data. In a very restricted range of the Amazon rainforest, eight uakari species (Cacajao genus) have been described and categorized into the bald and black uakari groups, based on phenotypic and ecological differences. Despite a slight habitat overlap, we show that posterior to their split 0.92 Mya, bald and black uakaris have remained independent, without gene flow. Nowadays, these two groups present distinct genetic diversity and group-specific variation linked to pathogens. We propose differing hydrology patterns and effectiveness of geographic barriers have modulated the intra-group connectivity and structure of bald and black uakari populations. With this work we have explored the effects of the Amazon rainforest's dynamism on wild primates' genetics and increased the representation of platyrrhine genomes, thus opening the door to future research on the complexity and diversity of primate genomics.
Collapse
Grants
- T.M.B gratefully acknowledges the financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 864203), (PID2021-126004NB-100) (MICIIN/FEDER, UE) and from the Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2021 SGR 00177). J.P.B. gratefully acknowledges the financial support from the Natural Environment Research Council (NERC) (NE/T000341/1). F.E.S. gratefully acknowledges the financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (801505), the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, Belgium; grant 40017464) Brazilian National Council for Scientific and Technological Development (CNPq) (Processes 303286/2014-8, 303579/2014-5, 200502/2015-8, 302140/2020-4, 300365/2021-7, 301407/2021-5, #301925/2021-6), the International Primatological Society (Conservation grant). The Rufford Foundation (14861-1, 23117-2, 38786-B), the Margot Marsh Biodiversity Foundation (SMA-CCO-G0023, SMA-CCOG0037), the Primate Conservation Inc. (1713 and 1689) and the Gordon and Betty Moore Foundation (Grant 5344) (Mamirauá Institute for Sustainable Development). N.H.-A. gratefully acknowledges the financial support from the Government of Catalonia | Agència de Gestió d'Ajuts Universitaris i de Recerca (Agency for Management of University and Research Grants) (FI_00040).
Collapse
Affiliation(s)
- Núria Hermosilla-Albala
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain.
| | - Felipe Ennes Silva
- Research Unit of Evolutionary Biology and Ecology, Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Brussels, Belgium
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
| | - Sebastián Cuadros-Espinoza
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Claudia Fontsere
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| | - Alejandro Valenzuela-Seba
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Harvinder Pawar
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Sandra Ruibal-Puertas
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Pol Alentorn-Moron
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Armida Faella
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX, 78212, USA
| | - Joao Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia-RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica-ComFauna, Iquitos, Loreto, Peru
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., San Diego, CA, 94404, USA
| | - Tomas Marques-Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003, Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010, Barcelona, Spain
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
50
|
de Greef E, Müller C, Thorstensen MJ, Ferguson SH, Watt CA, Marcoux M, Petersen SD, Garroway CJ. Unraveling the Genetic Legacy of Commercial Whaling and Population Dynamics in Arctic Bowhead Whales and Narwhals. GLOBAL CHANGE BIOLOGY 2024; 30:e17528. [PMID: 39400406 DOI: 10.1111/gcb.17528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Assessing genetic structure and diversity in wildlife is particularly important in the context of climate change. The Arctic is rapidly warming, and endemic species must adapt quickly or face significant threats to persistence. Bowhead whales (Balaena mysticetus) and narwhals (Monodon monoceros) are two long-lived Arctic species with similar habitat requirements and are often seen together in the Canadian Arctic. Although their ranges overlap extensively, bowhead whales experienced significantly greater commercial whaling mortality than narwhals over several centuries. The similar habitat requirements but different harvest histories of these two species provide an opportunity to examine present-day genetic diversity and the demographic and genetic consequences of commercial whaling. We whole-genome resequenced contemporary Canadian Arctic bowhead whales and narwhals to delineate population structure and reconstruct demographic history. We found higher genetic diversity in bowhead whales compared to narwhals. However, bowhead whale effective population size sharply declined contemporaneously with the intense commercial whaling period. Narwhals, in contrast, exhibited recent growth in effective population size, likely reflecting exposure to limited opportunistic commercial harvest. Bowhead whales will likely continue to experience significant genetic drift in the future, leading to the erosion of genetic diversity. In contrast, narwhals do not seem to be at imminent risk of losing their current levels of genetic variation due to their long-term low effective population size and lack of evidence for a recent decline. This work highlights the importance of considering population trajectories in addition to genetic diversity when assessing the genetics of populations for conservation and management purposes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Müller
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven H Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Cortney A Watt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Marianne Marcoux
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Stephen D Petersen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, Manitoba, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|