1
|
Yun KW, Son HS, Seong MJ, Lee SM, Kim MC. Enhanced eDNA monitoring for detection of viable harmful algal bloom species using propidium monoazide. HARMFUL ALGAE 2024; 139:102725. [PMID: 39567079 DOI: 10.1016/j.hal.2024.102725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
This study investigated the use of propidium monoazide (PMA) to improve the accuracy of environmental DNA (eDNA) monitoring by selectively detecting intracellular DNA (iDNA) from living cells, while excluding extracellular DNA (exDNA) from dead organisms. eDNA samples were collected from various depths off the coast of Tongyeong, South Korea, and analyzed alongside environmental factors, such as temperature, dissolved oxygen, turbidity, and nutrient levels. The results showed that PMA-treated iDNA provided a more accurate estimate of viable harmful algal bloom species (HABs) than total eDNA and DNase-treated iDNA. Strong correlations were found between iDNA (PMA) and environmental factors, particularly nutrient levels and turbidity, suggesting its effectiveness in biological environments. The iDNA (PMA) concentrations were higher in the surface and bottom layers, indicating that these layers were more indicative of living organisms in marine environments. The application of PMA in eDNA monitoring reduces false positives and enhances the detection accuracy of viable HAB species, representing a promising tool for real-time monitoring and management of marine ecosystems.
Collapse
Affiliation(s)
- Kun-Woo Yun
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Hwa-Seong Son
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Min-Jun Seong
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Seung-Min Lee
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Mu-Chan Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea.
| |
Collapse
|
2
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
3
|
Probst M, Telagathoti A, Mandolini E, Peintner U. Fungal and bacterial communities and their associations in snow-free and snow covered (sub-)alpine Pinus cembra forest soils. ENVIRONMENTAL MICROBIOME 2024; 19:20. [PMID: 38566162 PMCID: PMC10985912 DOI: 10.1186/s40793-024-00564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND In Europe, Pinus cembra forests cover subalpine and alpine areas and they are of high conservational and ecological relevance. These forests experience strong seasonality with alternating snow-free and snow covered periods. Although P. cembra is known for mycorrhization and mycorrhizae usually involve fungi, plants and bacteria, the community compositions of fungi and bacteria and their associations in (sub-)alpine P. cembra forests remain vastly understudied. Here, we studied the fungal and bacterial community compositions in three independent (sub-)alpine P. cembra forests and inferred their microbial associations using marker gene sequencing and network analysis. We asked about the effect of snow cover on microbial compositions and associations. In addition, we propose inferring microbial associations across a range of filtering criteria, based on which we infer well justified, concrete microbial associations with high potential for ecological relevance that are typical for P. cembra forests and depending on snow cover. RESULTS The overall fungal and bacterial community structure was comparable with regards to both forest locations and snow cover. However, occurrence, abundance, and diversity patterns of several microbial taxa typical for P. cembra forests differed among snow-free and snow covered soils, e.g. Russula, Tetracladium and Phenoliphera. Moreover, network properties and microbial associations were influenced by snow cover. Here, we present concrete microbial associations on genus and species level that were repeatedly found across microbial networks, thereby confirming their ecological relevance. Most importantly, ectomycorrhizal fungi, such as Basidioascus, Pseudotomentella and Rhizopogon, as well as saprobic Mortierella changed their bacterial association partners depending on snow cover. CONCLUSION This is the first study researching fungal-bacterial associations across several (sub-)alpine P. cembra forests. The poorly investigated influence of snow cover on soil fungi and bacteria, especially those mycorrhizing P. cembra roots, but also saprobic soil organisms, underlines the relevance of forest seasonality. Our findings highlight that the seasonal impact of snow cover has significant consequences for the ecology of the ecosystem, particularly in relation to mycorrhization and nutrient cycling. It is imperative to consider such effects for a comprehensive understanding of the functioning resilience and responsiveness of an ecosystem.
Collapse
Affiliation(s)
- Maraike Probst
- Department for Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Anusha Telagathoti
- Department for Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Edoardo Mandolini
- Department for Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Ursula Peintner
- Department for Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Krohn C, Jansriphibul K, Dias DA, Rees CA, Akker BVD, Boer JC, Plebanski M, Surapaneni A, O'Carroll D, Richard S, Batstone DJ, Ball AS. Dead in the water - Role of relic DNA and primer choice for targeted sequencing surveys of anaerobic sewage sludge intended for biological monitoring. WATER RESEARCH 2024; 253:121354. [PMID: 38428359 DOI: 10.1016/j.watres.2024.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Building 215, Level 3, Room 003-06, RMIT Bundoora West Campus, 225-245 Plenty Road, Bundoora, Victoria 3083, Australia.
| | - Kraiwut Jansriphibul
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Building 215, Level 3, Room 003-06, RMIT Bundoora West Campus, 225-245 Plenty Road, Bundoora, Victoria 3083, Australia
| | - Daniel A Dias
- Centre for Advanced Sensory Science (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Catherine A Rees
- Melbourne Water Corporation, 990 La Trobe Street, Docklands, Victoria 3008, Australia
| | - Ben van den Akker
- South Australian Water Corporation, Adelaide, South Australia 5000, Australia
| | - Jennifer C Boer
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Building 215, Level 3, Room 003-06, RMIT Bundoora West Campus, 225-245 Plenty Road, Bundoora, Victoria 3083, Australia; South East Water, 101 Wells Street, Frankston, Victoria 3199, Australia
| | - Denis O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuetz Richard
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Building 215, Level 3, Room 003-06, RMIT Bundoora West Campus, 225-245 Plenty Road, Bundoora, Victoria 3083, Australia; Australian Centre for Water and Environmental Biotechnology (ACWEB), Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Building 215, Level 3, Room 003-06, RMIT Bundoora West Campus, 225-245 Plenty Road, Bundoora, Victoria 3083, Australia
| |
Collapse
|
5
|
Wang S, Lu Q, Liang Z, Yu X, Lin M, Mai B, Qiu R, Shu W, He Z, Wall JD. Generation of zero-valent sulfur from dissimilatory sulfate reduction in sulfate-reducing microorganisms. Proc Natl Acad Sci U S A 2023; 120:e2220725120. [PMID: 37155857 PMCID: PMC10194018 DOI: 10.1073/pnas.2220725120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.
Collapse
Affiliation(s)
- Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Xiaoxiao Yu
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Mang Lin
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Bixian Mai
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou510642, China
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou510631, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO65211
- Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO65211
| |
Collapse
|
6
|
Yuan Q, Wang Y, Wang S, Li R, Ma J, Wang Y, Sun R, Luo Y. Adenine imprinted beads as a novel selective extracellular DNA extraction method reveals underestimated prevalence of extracellular antibiotic resistance genes in various environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158570. [PMID: 36075418 DOI: 10.1016/j.scitotenv.2022.158570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Despite severe threats of extracellular antibiotic resistance genes (eARGs) towards public health in various environments, advanced studies have been hindered mainly by ineffective extracellular DNA (exDNA) extraction methods, which is challenged by trace levels of exDNA and inference from abundant coexisting compounds. This study developed a highly selective exDNA extraction method based on molecular imprinting technology (MIT) by using adenine as the template for the first time. Results suggested that adenine imprinted beads were rough spheres at an average size of 0.39 ± 0.07 μm. They effectively adsorbed DNA in the absence of chaotropic agents, with superior capacity (796.2 mg/g), rate (0.0066/s) and regarding DNA of variable lengths, even the ultra-short DNA (<100 bp). They were also highly selective towards DNA, circumventing the interference of competitive compounds' interference. These properties contribute to efficient exDNA extraction (71 %-119 %) from various environmental samples. Specifically, adenine imprinted beads enabled significantly higher extraction rates of eARGs from river, air and vegetable samples (69 %-95 %) compared to that by commercial DNA extraction products (16 %-62 %). The adenine imprinted beads-based method reveals underestimated eARG levels in the environment and the corresponding risks, and thus will thus be a powerful tool for advanced exDNA research.
Collapse
Affiliation(s)
- Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shangjie Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruiqing Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junlu Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yijing Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, USA
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Nagler M, Podmirseg SM, Ascher‐Jenull J, Sint D, Traugott M. Why eDNA fractions need consideration in biomonitoring. Mol Ecol Resour 2022; 22:2458-2470. [PMID: 35652762 PMCID: PMC9545497 DOI: 10.1111/1755-0998.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
The analysis of environmental DNA (eDNA) is revolutionizing the monitoring of biodiversity as it allows to assess organismic diversity at large scale and unprecedented taxonomic detail. However, eDNA consists of an extracellular and intracellular fraction, each characterized by particular properties that determine the retrievable information on when and where organisms live or have been living. Here, we review the fractions of eDNA, describe how to obtain them from environmental samples and present a four-scenario concept that aims at enhancing spatial and temporal resolution of eDNA-based monitoring. Importantly, we highlight how the appropriate choice of eDNA fractions precludes misinterpretation of eDNA-based biodiversity data. Finally, future avenues of research towards eDNA fraction-specific analyses are outlined to unravel the full potential of eDNA-based studies targeting micro- and macro-organisms.
Collapse
Affiliation(s)
| | | | | | - Daniela Sint
- Department of ZoologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
8
|
Li S, Jiang W, Wang CY, Weng L, Du B, Peng JM. A case of disseminated Legionnaires’ disease: The value of metagenome next-generation sequencing in the diagnosis of Legionnaires. Front Med (Lausanne) 2022; 9:955955. [PMID: 36226140 PMCID: PMC9548583 DOI: 10.3389/fmed.2022.955955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundLegionella rarely causes hospital-acquired pneumonia (HAP), although it is one of the most common pathogens of community-acquired pneumonia. Hospital-acquired Legionnaires’ disease, mainly occurring in immunocompromised patients, is often delayed in diagnosis with high mortality. The use of the metagenome Next-Generation Sequencing (mNGS) method, which is fast and unbiased, allows for the early detection and identification of microorganisms using a culture-independent strategy.Case reportA 52-year-old male, with a past medical history of Goods syndrome, was admitted due to nephrotic syndrome. The patient developed severe pneumonia, rhabdomyolysis, and soft tissue infection after receiving immunosuppressive therapy. He did not respond well to empiric antibiotics and was eventually transferred to the medical intensive care unit because of an acute respiratory failure and septic shock. The patient then underwent a comprehensive conventional microbiological screening in bronchoalveolar lavage fluid (BALF) and blood, and the results were all negative. As a last resort, mNGS of blood was performed. Extracellular cell-free and intracellular DNA fragments of Legionella were detected in plasma and blood cell layer by mNGS, respectively. Subsequent positive results of polymerase chain reaction for Legionella in BALF and soft tissue specimens confirmed the diagnosis of disseminated Legionnaires’ disease involving the lungs, soft tissue, and blood stream. The patient’s condition improved promptly after a combination therapy of azithromycin and moxifloxacin. He was soon extubated and discharged from ICU with good recovery.ConclusionEarly recognition and diagnosis of disseminated Legionnaires’ disease is challenging. The emergence and innovation of mNGS of blood has the potential to address this difficult clinical issue.
Collapse
|
9
|
Zou Y, Wu M, Liu J, Tu W, Xie F, Wang H. Deciphering the extracellular and intracellular antibiotic resistance genes in multiple environments reveals the persistence of extracellular ones. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128275. [PMID: 35093750 DOI: 10.1016/j.jhazmat.2022.128275] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The extracellular and intracellular antibiotic resistance genes (eARGs and iARGs) together constitute the entire resistome in environments. However, the systematic analysis of eARGs and iARGs was still inadequate. Three kinds of environments, i.e., livestock manure, sewage sludge, and lake sediment, were analyzed to reveal the comprehensive characteristics of eARGs and iARGs. Based on the metagenomic data, the diversities, relative abundances, and compositions of eARGs and iARGs were similar. The extracellular and intracellular integrons and insertion sequences (ISs) also did not show any significant differences. However, the degree and significance of the correlation between total relative abundances of integrons/ISs and ARGs were lower outside than inside the cells. Gene cassettes carried by class 1 integron were amplified in manure and sludge samples, and sequencing results showed that the identified ARGs extracellularly and intracellularly were distinct. By analyzing the genetic contexts, most ARGs were found located on chromosomes. Nevertheless, the proportion of ARGs carried by plasmids increased extracellularly. qPCR was employed to quantify the absolute abundances of sul1, sul2, tetO, and tetW, and their extracellular proportions were found highest in sludge samples. These findings together raised the requirements of considering eARGs and iARGs separately in terms of risk evaluation and removal management.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Menghan Wu
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayu Liu
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Fengxing Xie
- Tianjin Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Science, Tianjin 300384, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Lee AS, Lamanna OK, Ishida K, Hill E, Nguyen A, Hsieh MH. A Novel Propidium Monoazide-Based PCR Assay Can Measure Viable Uropathogenic E. coli In Vitro and In Vivo. Front Cell Infect Microbiol 2022; 12:794323. [PMID: 35178354 PMCID: PMC8844370 DOI: 10.3389/fcimb.2022.794323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Polymerase chain reaction (PCR) is an important means by which to study the urine microbiome and is emerging as possible alternative to urine cultures to identify pathogens that cause urinary tract infection (UTI). However, PCR is limited by its inability to differentiate DNA originating from viable, metabolically active versus non-viable, inactive bacteria. This drawback has led to concerns that urobiome studies and PCR-based diagnosis of UTI are confounded by the presence of relic DNA from non-viable bacteria in urine. Propidium monoazide (PMA) dye can penetrate cells with compromised cell membranes and covalently bind to DNA, rendering it inaccessible to amplification by PCR. Although PMA has been shown to differentiate between non-viable and viable bacteria in various settings, its effectiveness in urine has not been previously studied. We sought to investigate the ability of PMA to differentiate between viable and non-viable bacteria in urine. Methods Varying amounts of viable or non-viable uropathogenic E. coli (UTI89) or buffer control were titrated with mouse urine. The samples were centrifuged to collect urine sediment or not centrifuged. Urine samples were incubated with PMA and DNA cross-linked using blue LED light. DNA was isolated and uidA gene-specific PCR was performed. For in vivo studies, mice were inoculated with UTI89, followed by ciprofloxacin treatment or no treatment. After the completion of ciprofloxacin treatment, an aliquot of urine was plated on non-selective LB agar and another aliquot was treated with PMA and subjected to uidA-specific PCR. Results PMA’s efficiency in excluding DNA signal from non-viable bacteria was significantly higher in bacterial samples in phosphate-buffered saline (PBS, dCT=13.69) versus bacterial samples in unspun urine (dCT=1.58). This discrepancy was diminished by spinning down urine-based bacterial samples to collect sediment and resuspending it in PBS prior to PMA treatment. In 3 of 5 replicate groups of UTI89-infected mice, no bacteria grew in culture; however, there was PCR amplification of E. coli after PMA treatment in 2 of those 3 groups. Conclusion We have successfully developed PMA-based PCR methods for amplifying DNA from live bacteria in urine. Our results suggest that non-PMA bound DNA from live bacteria can be present in urine, even after antibiotic treatment. This indicates that viable but non-culturable E. coli can be present following treatment of UTI, and may explain why some patients have persistent symptoms but negative urine cultures following UTI treatment.
Collapse
Affiliation(s)
- Albert S. Lee
- Division of Pediatric Urology, Children’s National Hospital, Washington, DC, United States
| | - Olivia K. Lamanna
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
| | - Kenji Ishida
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
| | - Elaise Hill
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States
| | - Andrew Nguyen
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Michael H. Hsieh
- Division of Pediatric Urology, Children’s National Hospital, Washington, DC, United States
- Sheikh Zayed Institute, Children’s National Hospital, Washington, DC, United States
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Michael H. Hsieh,
| |
Collapse
|
11
|
Extracellular DNA in environmental samples: Occurrence, extraction, quantification, and impact on microbial biodiversity assessment. Appl Environ Microbiol 2021; 88:e0184521. [PMID: 34818108 DOI: 10.1128/aem.01845-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental DNA, i.e., DNA directly extracted from environmental samples, has been applied to understand microbial communities in the environments and to monitor contemporary biodiversity in the conservation context. Environmental DNA often contains both intracellular DNA (iDNA) and extracellular DNA (eDNA). eDNA can persist in the environment and complicate environmental DNA sequencing-based analyses of microbial communities and biodiversity. Although several studies acknowledged the impact of eDNA on DNA-based profiling of environmental communities, eDNA is still being neglected or ignored in most studies dealing with environmental samples. In this article, we summarize key findings on eDNA in environmental samples and discuss the methods used to extract and quantify eDNA as well as the importance of eDNA on the interpretation of experimental results. We then suggest several factors to consider when designing experiments and analyzing data to negate or determine the contribution of eDNA to environmental DNA-based community analyses. This field of research will be driven forward by: (i) carefully designing environmental DNA extraction pipelines by taking into consideration technical details in methods for eDNA extraction/removal and membrane-based filtration and concentration; (ii) quantifying eDNA in extracted environmental DNA using multiple methods including qPCR and fluorescent DNA binding dyes; (iii) carefully interpretating effect of eDNA on DNA-based community analyses at different taxonomic levels; and (iv) when possible, removing eDNA from environmental samples for DNA-based community analyses.
Collapse
|
12
|
Pathan SI, Arfaioli P, Taskin E, Ceccherini MT, Puglisi E, Pietramellara G. The extracellular DNA can baffle the assessment of soil bacterial community, but the effect varies with microscale spatial distribution. FEMS Microbiol Lett 2021; 368:6298223. [PMID: 34124758 DOI: 10.1093/femsle/fnab074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Environmental DNA is made-up of intracellular (iDNA) and extracellular (eDNA) pools. In soils, eDNA can be present up to 40% and could distort the assessment of living microorganisms. Distribution of microbial community is inconsistent among different size-aggregates, and the persistence and turnover of eDNA are thus uneven. Uneven persistence and distribution of eDNA could lead to heterogeneity in community analysis biases that arise due to eDNA sequences at micro-scale distribution. Here, we investigated the diversity and structure of eDNA and iDNA bacterial communities in bulk soil and different size-aggregates. Significant differences were observed between eDNA and iDNA bacterial diversity and composition. Changes in community composition are more important than the amount of eDNA to assess the biases caused by eDNA in community analysis. Furthermore, variations were also observed in aggregates-levels for eDNA and iDNA community which indicates that colonization pattern of iDNA community and protection of eDNA through absorbance on particle surface within soil-matrix is heterogeneous. Our work provides empirical evidence that eDNA presence could mask the detection of aggregates-level spatial dynamics in soil microbial community and have potential to qualitatively baffle observed live effects of given treatment by adequately muting the actual response dynamics of the soil microbiome.
Collapse
Affiliation(s)
- Shamina Imran Pathan
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Paola Arfaioli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Teresa Ceccherini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Giacomo Pietramellara
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Florence, Italy
| |
Collapse
|
13
|
Probst M, Ascher-Jenull J, Insam H, Gómez-Brandón M. The Molecular Information About Deadwood Bacteriomes Partly Depends on the Targeted Environmental DNA. Front Microbiol 2021; 12:640386. [PMID: 33986733 PMCID: PMC8110828 DOI: 10.3389/fmicb.2021.640386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Microbiome studies mostly rely on total DNA extracts obtained directly from environmental samples. The total DNA consists of both intra- and extracellular DNA, which differ in terms of their ecological interpretation. In the present study, we have investigated for the first time the differences among the three DNA types using microbiome sequencing of Picea abies deadwood logs (Hunter decay classes I, III, and V). While the bacterial compositions of all DNA types were comparable in terms of more abundant organisms and mainly depended on the decay class, we found substantial differences between DNA types with regard to less abundant amplicon sequence variants (ASVs). The analysis of the sequentially extracted intra- and extracellular DNA fraction, respectively, increased the ecological depth of analysis compared to the directly extracted total DNA pool. Both DNA fractions were comparable in proportions and the extracellular DNA appeared to persist in the P. abies deadwood logs, thereby causing its masking effect. Indeed, the extracellular DNA masked the compositional dynamics of intact cells in the total DNA pool. Our results provide evidence that the choice of DNA type for analysis might benefit a study’s answer to its respective ecological question. In the deadwood environment researched here, the differential analysis of the DNA types underlined the relevance of Burkholderiales, Rhizobiales and other taxa for P. abies deadwood decomposition and revealed that the role of Acidobacteriota under this scenario might be underestimated, especially compared to Actinobacteriota.
Collapse
Affiliation(s)
- Maraike Probst
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - María Gómez-Brandón
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria.,Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, Vigo, Spain
| |
Collapse
|