1
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025; 100:1396-1418. [PMID: 39956989 PMCID: PMC12120398 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre1055 Rue du PepsQuébec CityQuebecG1V 4C7Canada
- Department of BiologyLaval University1045 Avenue de la MédecineQuébec CityQuebecG1V 0A6Canada
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
| | - Ilga Porth
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Department of Wood and Forest SciencesLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Centre for Forest ResearchLaval University2405 Rue de La TerrasseQuébec CityQuebecG1V 0A6Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood TechnologyPoznań University of Life Sciences71E Wojska Polskiego StreetPoznańPL 60‐625Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Agnieszka Kloch
- Faculty of BiologyUniversity of WarsawMiecznikowa 1Warsaw02‐089Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| |
Collapse
|
2
|
Cui M, Roe AD, Boyle B, Keena M, Wu Y, Braswell WE, Smith MT, Gasman B, Shi J, Javal M, Roux G, Turgeon JJ, Hamelin R, Porth I. Tracking the North American Asian Longhorned Beetle Invasion With Genomics. Evol Appl 2024; 17:e70036. [PMID: 39568689 PMCID: PMC11576519 DOI: 10.1111/eva.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024] Open
Abstract
Biological invasions pose significant threats to ecological and economic stability, with invasive pests like the Asian longhorned beetle (Anoplophora glabripennis Motschulsky, ALB) causing substantial damage to forest ecosystems. Effective pest management relies on comprehensive knowledge of the insect's biology and invasion history. This study uses genomics to address these knowledge gaps and inform existing biosurveillance frameworks. We used 2768 genome-wide single nucleotide polymorphisms to compare invasive A. glabripennis populations in North America, using genomic variation to trace their sources of invasion and spread patterns, thereby refining our understanding of this species' invasion history. We found that most North American A. glabripennis infestations were distinct, resulting from multiple independent introductions from the native range. Following their introduction, all invasive populations experienced a genetic bottleneck which was followed by a population expansion, with a few also showing secondary spread to satellite infestations. Our study provides a foundation for a genome-based biosurveillance tool that can be used to clarify the origin of intercepted individuals, allowing regulatory agencies to strengthen biosecurity measures against this invasive beetle.
Collapse
Affiliation(s)
- Mingming Cui
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
- Département des sciences du bois et de la forêt Université Laval Quebec City Quebec Canada
| | - Amanda D Roe
- Natural Resources Canada, Canadian Forest Service Great Lakes Forestry Centre Sault Ste. Marie Ontario Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
| | - Melody Keena
- Northern Research Station, Forest Service United States Department of Agriculture Hamden Connecticut USA
| | - Yunke Wu
- Forest Pest Methods Laboratory, Plant Protection and Quarantine Science and Technology, Animal and Plant Health Inspection Service United States Department of Agriculture Buzzards Bay Massachusetts USA
| | - W Evan Braswell
- Insect Management and Molecular Diagnostics Laboratory, Plant Protection and Quarantine Science and Technology, Animal and Plant Health Inspection Service United States Department of Agriculture Edinburg Texas USA
| | - Michael T Smith
- Beneficial Insects Introduction Research Lab, Agricultural Research Service United States Department of Agriculture Newark Delaware USA
| | - Ben Gasman
- Canadian Food Inspection Agency Toronto Ontario Canada
| | - Juan Shi
- Key Laboratory for Silviculture and Conservation of Ministry of Education Beijing Forestry University Beijing China
| | - Marion Javal
- Institut National de la Recherche Agronomique, UR633 Zoologie Forestière Orléans France
- CBGP, IRD, CIRAD, INRAE, Institut Agro Montpellier Université de Montpellier Montpellier France
| | - Geraldine Roux
- Institut National de la Recherche Agronomique, UR633 Zoologie Forestière Orléans France
- Laboratoire Physiologie, Ecologie et Environnement P2E Université d'Orléans Orléans France
| | - Jean J Turgeon
- Natural Resources Canada, Canadian Forest Service Great Lakes Forestry Centre Sault Ste. Marie Ontario Canada
| | - Richard Hamelin
- Department of Forest & Conservation Sciences The University of British Columbia Vancouver British Columbia Canada
| | - Ilga Porth
- Institut de Biologie Intégrative et des Systèmes Université Laval Quebec City Quebec Canada
- Département des sciences du bois et de la forêt Université Laval Quebec City Quebec Canada
| |
Collapse
|
3
|
Lampert KP, Heermann L, Storm S, Hirsch PE, Cerwenka AF, Heubel K, Borcherding J, Waldvogel AM. Round gobies (Neogobius melanostomus) in the River Rhine: Population genetic support for invasion via two different routes. PLoS One 2024; 19:e0310692. [PMID: 39298456 DOI: 10.1371/journal.pone.0310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
The round goby, Neogobius melanostomus, is a successful invasive fish species. Originating from the Caspian and Black Sea, it is now distributed widely within European fresh- and brackish waters. The River Rhine was colonized in 2008 only a few years after the opening of the Rhine-Main-Danube canal and only four years after N. melanostomus was first reported in the upper Danube River. Its invasion history of the River Rhine was unclear because the species was first detected close to the Rhine river delta which would suggest a route of invasion other than via the Rhine-Main-Danube canal. To investigate the colonization history of N. melanostomus in the Rhine, we combined abundance estimates with molecular analysis. Abundance estimates found N. melanostomus to be dominant in the Lower Rhine (> 90% of all catches). Molecular analysis was done on 286 individuals from four different sites. Using the mitochondrial control region (d-loop), we found three different haplotypes in both Rhine sites. None of the potential invasive source populations in the rivers Danube and Trave exhibited all three haplotypes. The molecular data therefore supported a scenario of two different colonization directions. Our results show that the invasion history of the River Rhine is complex and warrants further investigation.
Collapse
Affiliation(s)
| | - Lisa Heermann
- Ecological Field Station Rees, Institute of Zoology of the University of Cologne, Rees, Germany
| | - Svenja Storm
- Ecological Field Station Rees, Institute of Zoology of the University of Cologne, Rees, Germany
- Landesfischereiverband Westfalen und Lippe e.V., Münster, Germany
| | - Philipp Emanuel Hirsch
- Department of Environmental Sciences, Program Man-Society-Environment, University of Basel, Basel, Switzerland
| | | | - Katja Heubel
- Ecological Field Station Rees, Institute of Zoology of the University of Cologne, Rees, Germany
- Research and Technology Centre West Coast (FTZ), Kiel University, Büsum, Germany
| | - Jost Borcherding
- Ecological Field Station Rees, Institute of Zoology of the University of Cologne, Rees, Germany
| | | |
Collapse
|
4
|
Durand K, Yainna S, Nam K. Population genomics unravels a lag phase during the global fall armyworm invasion. Commun Biol 2024; 7:957. [PMID: 39117774 PMCID: PMC11310199 DOI: 10.1038/s42003-024-06634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The time that elapsed between the initial introduction and the proliferation of an invasive species is referred to as the lag phase. The identification of the lag phase is critical for generating plans for pest management and for the prevention of biosecurity failure. However, lag phases have been identified mostly through retrospective searches of historical records. The agricultural pest fall armyworm (FAW; Spodoptera frugiperda) is native to the New World. FAW invasion was first reported from West Africa in 2016, then it spread quickly through Africa, Asia, and Oceania. Here, using population genomics approaches, we demonstrate that the FAW invasion involved an undocumented lag phase. Invasive FAW populations have negative signs of genomic Tajima's D, and invasive population-specific genetic variations have particularly decreased Tajima's D, supporting a substantial amount of time for the generation of new mutations in introduced FAW populations. Model-based diffusion approximations support the existence of a period with a cessation of gene flow between native and invasive FAW populations. Taken together, these results provide strong support for the presence of a lag phase during the FAW invasion. These results show the usefulness of using population genomics analyses to identify lag phases in biological invasions.
Collapse
Affiliation(s)
| | | | - Kiwoong Nam
- DGIMI, INRAE, Univ Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
6
|
Abstract
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects' shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
7
|
Temporal decline of genetic differentiation among populations of western flower thrips across an invaded range. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Tobin PC, Robinet C. Advances in understanding and predicting the spread of invading insect populations. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100985. [PMID: 36216241 DOI: 10.1016/j.cois.2022.100985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Understanding and predicting the spread of invading insects is a critical challenge in management programs that aim to minimize ecological and economic harm to native ecosystems. Although efforts to quantify spread rates have been well studied over the past several decades, opportunities to improve our ability to estimate rates of spread, and identify the factors, such as habitat suitability and climate, that influence spread, remain. We review emerging sources of data that can be used to delineate distributional boundaries through time and thus serve as a basis for quantifying spread rates. We then address advances in modeling methods that facilitate our understanding of factors that drive invasive insect spread. We conclude by highlighting some remaining challenges in understanding and predicting invasive insect spread, such as the role of climate change and biotic similarity between the native and introduced ranges, particularly as it applies to decision-making in management programs.
Collapse
Affiliation(s)
- Patrick C Tobin
- University of Washington, School of Environmental and Forest Sciences, 123 Anderson Hall, 3715 W. Stevens Way NE, Seattle, WA, USA.
| | | |
Collapse
|
9
|
Poveda-Martínez D, Salinas NA, Aguirre MB, Sánchez-Restrepo AF, Hight S, Díaz-Soltero H, Logarzo G, Hasson E. Genomic and ecological evidence shed light on the recent demographic history of two related invasive insects. Sci Rep 2022; 12:19629. [PMID: 36385480 PMCID: PMC9669014 DOI: 10.1038/s41598-022-21548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hypogeococcus pungens is a species complex native to southern South America that is composed of at least five putative species, each one specialized in the use of different host plants. Two of these undescribed species were registered as invasive in Central and North America: Hyp-C is a cactophagous mealybug that became an important pest that threatens endemic cactus species in Puerto Rico, and Hyp-AP feeds on Amaranthaceae and Portulacaceae hosts, but does not produce severe damage to the host plants. We quantified genomic variation and investigated the demographic history of both invasive species by means of coalescent-based simulations using high throughput sequencing data. We also evaluated the incidence of host plant infestation produced by both species and used an ecological niche modeling approach to assess potential distribution under current and future climatic scenarios. Our genetic survey evinced the footprints of strong effective population size reduction and signals of genetic differentiation among populations within each species. Incidence of plant attacks varied between species and among populations within species, with some host plant species preferred over others. Ecological niche modeling suggested that under future climatic scenarios both species would expand their distribution ranges in Puerto Rico. These results provide valuable information for the design of efficient management and control strategies of the Puerto Rican cactus pest and shed light on the evolutionary pathways of biological invasions.
Collapse
Affiliation(s)
- Daniel Poveda-Martínez
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina.
- Facultad de Ciencias Exactas Y Naturales, Instituto de Ecología Genética Y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nicolas A Salinas
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Aguirre
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina.
| | - Andrés F Sánchez-Restrepo
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Stephen Hight
- Insect Behavior and Biocontrol Research Unit (IBBRU), USDA-ARS, Tallahassee, FL, USA
| | | | - Guillermo Logarzo
- Fundación Para El Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
| | - Esteban Hasson
- Facultad de Ciencias Exactas Y Naturales, Instituto de Ecología Genética Y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Wang J, Cheng ZY, Dong YW. Demographic, physiological, and genetic factors linked to the poleward range expansion of the snail Nerita yoldii along the shoreline of China. Mol Ecol 2022; 31:4510-4526. [PMID: 35822322 DOI: 10.1111/mec.16610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022]
Abstract
Species range shift is one of the most significant consequences of climate change in the Anthropocene. A comprehensive study, including demographic, physiological, and genetic factors linked to poleward range expansion, is crucial for understanding how the expanding population occupies the new habitat. In the present study, we investigated the demographic, physiological, and genetic features of the intertidal gastropod Nerita yoldii, which has extended its northern limit by ~200 km over the former biogeographic break of the Yangtze River Estuary during recent decades. The neutral SNPs data showed that the new marginal populations formed a distinct cluster established by a few founders. Demographic modelling analysis revealed that the new marginal populations experienced a strong genetic bottleneck followed by recent demographic expansion. Successful expansion that overcame the founder effect might be attributed to its high capacity of rapid population growth and multiple introductions. According to the non-neutral SNPs under diversifying selection, there were high levels of heterozygosity in the new marginal populations, which might be beneficial for adapting to the novel thermal conditions. The common garden experiment showed that the new marginal populations have evolved divergent transcriptomic and physiological responses to heat stress, allowing them to occupy and survive in the novel environment. Lower transcriptional plasticity was observed in the new marginal populations. These results suggest a new biogeographic pattern of N. yoldii has formed with the occurrence of demographic, physiologic, and genetic changes, and emphasize the roles of adaptation of marginal populations during range expansion.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zhi-Yuan Cheng
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, PR China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, PR China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|