1
|
Bókony V, Balogh E, Mikó Z, Kásler A, Örkényi Z, Ujhegyi N. Higher Sex-Reversal Rate of Urban Frogs in a Common-Garden Experiment Suggests Adaptive Microevolution. Evol Appl 2025; 18:e70093. [PMID: 40201774 PMCID: PMC11976026 DOI: 10.1111/eva.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Ectothermic vertebrates with genotypic sex determination may adjust their sexual phenotype to early-life environmental conditions by sex reversal, and theoretical models predict diverse consequences for population dynamics and microevolution under environmental change. Environments that frequently expose individuals to sex-reversing effects may select for or against the propensity to undergo sex reversal, depending on the relative fitness of sex-reversed individuals. Yet, empirical data on the adaptive value and evolutionary potential of sex reversal is scarce. Here we conducted a common-garden experiment with agile frogs (Rana dalmatina) that respond to larval heat stress by sex reversal, to test whether sex-reversal propensity has changed via microevolution in populations that live in anthropogenic habitats where potentially sex-reversing heat events are more frequent, compared to populations that live in cooler woodland habitats. Furthermore, to infer the adaptive value of sex reversal, we compared fitness-related traits between heat-exposed genotypic females that phenotypically developed into males (sex-reversed) or females (sex-concordant). We found that the frequency of sex reversal varied between sibgroups and was higher in the sibgroups originating from anthropogenic habitats, regardless of the thermal environment they had been exposed to during the larval sex-determination period. Among heat-exposed animals, time to metamorphosis was similar between sex-reversed individuals and sex-concordant females, but the former reached larger body mass by the end of the experiment than the latter, approaching the mass of sex-concordant males. These results suggest that sex-reversal propensity may have increased in anthropogenic environments by adaptive microevolution, potentially to minimize the fitness cost of reduced growth caused by heat events. Thus, environmental sex reversal has the potential to provide an adaptive strategy for ectothermic vertebrates to cope with challenges of the Anthropocene. Such knowledge on the causes and consequences of sex reversal will help pinpoint which populations are most threatened by extinction due to climatically influenced sex determination.
Collapse
Affiliation(s)
- Veronika Bókony
- Department of Evolutionary EcologyPlant Protection Institute, HUN‐REN Centre for Agricultural ResearchBudapestHungary
| | - Emese Balogh
- Molecular Ecology Research Group, Department of ZoologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Zsanett Mikó
- Department of Evolutionary EcologyPlant Protection Institute, HUN‐REN Centre for Agricultural ResearchBudapestHungary
- Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Andrea Kásler
- Department of Evolutionary EcologyPlant Protection Institute, HUN‐REN Centre for Agricultural ResearchBudapestHungary
- Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Zoltán Örkényi
- Molecular Ecology Research Group, Department of ZoologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Nikolett Ujhegyi
- Department of Evolutionary EcologyPlant Protection Institute, HUN‐REN Centre for Agricultural ResearchBudapestHungary
- Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature ConservationHungarian University of Agriculture and Life SciencesGödöllőHungary
| |
Collapse
|
2
|
Ujszegi J, Ujhegyi N, Balogh E, Mikó Z, Kásler A, Hettyey A, Bókony V. No sex-dependent mortality in an amphibian upon infection with the chytrid fungus, Batrachochytrium dendrobatidis. Ecol Evol 2024; 14:e70219. [PMID: 39219568 PMCID: PMC11362217 DOI: 10.1002/ece3.70219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
One of the major factors driving the currently ongoing biodiversity crisis is the anthropogenic spread of infectious diseases. Diseases can have conspicuous consequences, such as mass mortality events, but may also exert covert but similarly severe effects, such as sex ratio distortion via sex-biased mortality. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is among the most important threats to amphibian biodiversity. Yet, whether Bd infection can skew sex ratios in amphibians is currently unknown, although such a hidden effect may cause the already dwindling amphibian populations to collapse. To investigate this possibility, we collected common toad (Bufo bufo) tadpoles from a natural habitat in Hungary and continuously treated them until metamorphosis with sterile Bd culture medium (control), or a liquid culture of a Hungarian or a Spanish Bd isolate. Bd prevalence was high in animals that died during the experiment but was almost zero in individuals that survived until the end of the experiment. Both Bd treatments significantly reduced survival after metamorphosis, but we did not observe sex-dependent mortality in either treatment. However, a small number of genotypically female individuals developed male phenotype (testes) in the Spanish Bd isolate treatment. Therefore, future research is needed to ascertain if larval Bd infection can affect sex ratio in common toads through female-to-male sex reversal.
Collapse
Affiliation(s)
- János Ujszegi
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
- Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Nikolett Ujhegyi
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
| | - Emese Balogh
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
- Department of ZoologyUniversity of Veterinary Medicine BudapestBudapestHungary
| | - Zsanett Mikó
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
| | - Andrea Kásler
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
- Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Attila Hettyey
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
- Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Veronika Bókony
- Department of Evolutionary Ecology, HUN‐REN Centre for Agricultural ResearchPlant Protection InstituteBudapestHungary
| |
Collapse
|
3
|
Bókony V, Kalina C, Ujhegyi N, Mikó Z, Lefler KK, Vili N, Gál Z, Gabor CR, Hoffmann OI. Does stress make males? An experiment on the role of glucocorticoids in anuran sex reversal. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:172-181. [PMID: 38155497 DOI: 10.1002/jez.2772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Environmentally sensitive sex determination may help organisms adapt to environmental change but also makes them vulnerable to anthropogenic stressors, with diverse consequences for population dynamics and evolution. The mechanisms translating environmental stimuli to sex are controversial: although several fish experiments supported the mediator role of glucocorticoid hormones, results on some reptiles challenged it. We tested this hypothesis in amphibians by investigating the effect of corticosterone on sex determination in agile frogs (Rana dalmatina). This species is liable to environmental sex reversal whereby genetic females develop into phenotypic males. After exposing tadpoles during sex determination to waterborne corticosterone, the proportion of genetic females with testes or ovotestes increased from 11% to up to 32% at 3 out of 4 concentrations. These differences were not statistically significant except for the group treated with 10 nM corticosterone, and there was no monotonous dose-effect relationship. These findings suggest that corticosterone is unlikely to mediate sex reversal in frogs. Unexpectedly, animals originating from urban habitats had higher sex-reversal and corticosterone-release rates, reduced body mass and development speed, and lower survival compared to individuals collected from woodland habitats. Thus, anthropogenic environments may affect both sex and fitness, and the underlying mechanisms may vary across ectothermic vertebrates.
Collapse
Affiliation(s)
- Veronika Bókony
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Csenge Kalina
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nikolett Ujhegyi
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Institute of Agricultural and Environmental Safety, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Nóra Vili
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Orsolya Ivett Hoffmann
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| |
Collapse
|
4
|
Orton F, Roberts-Rhodes B, Whatley C, Tyler CR. A review of non-destructive biomonitoring techniques to assess the impacts of pollution on reproductive health in frogs and toads. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115163. [PMID: 37354567 DOI: 10.1016/j.ecoenv.2023.115163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
In anuran amphibians (frogs and toads), evidence linking pollution to population declines is limited, in particular through impaired reproduction. Here we review the evidence for pollutant-induced alterations on reproductive endpoints in wild anurans with a particular focus on the application of non-destructive endpoints including on sex ratios, male reproductive phenotypes (data are too scarce for females) and reproductive outputs (reflective of mating success). Data evidencing alterations in sex ratio in wild anurans are scarce, however, both feminisation and masculinisation in response to pollution have been reported (seven studies). Male nuptial pad morphology and calling behaviour display high sensitivity to pollutant-exposure and are important features determining male breeding success, however there is considerable variation in these endpoints and inconsistencies in the responses of them to pollution are reported in wild anurans. Data for clutch size are insufficient to assess sensitivity to pollutants (five studies only). However, hatch success and offspring fitness (tadpole survival/development) are sensitive to pollution, with clear linkages to population stability. In conclusion, there are a wide range of non destructive measures with good potential for application to assess/monitor reproductive health in wild anurans, however, a greater understanding of pollutant effects on these endpoints is needed. There measures deserve wider application as they are relatively simple and inexpensive to implement, and as they can be applied non-destructively are widely applicable to our declining anuran populations.
Collapse
Affiliation(s)
- Frances Orton
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK; Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS UK.
| | - Bethany Roberts-Rhodes
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Catherine Whatley
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
5
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|