1
|
Tang R, Guo H, Chen JQ, Huang C, Kong XX, Cao L, Wan FH, Han RC. Tandemly expanded OR17b in Himalaya ghost moth facilitates larval food allocation via olfactory reception of plant-derived tricosane. Int J Biol Macromol 2024; 268:131503. [PMID: 38663697 DOI: 10.1016/j.ijbiomac.2024.131503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/30/2024]
Abstract
Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.
Collapse
Affiliation(s)
- Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hao Guo
- College of Life Science, Institute of life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jia-Qi Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiang-Xin Kong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
2
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tang R, Huang C, Yang J, Rao ZC, Cao L, Bai PH, Zhao XC, Dong JF, Yan XZ, Wan FH, Jiang NJ, Han RC. A ghost moth olfactory prototype of the lepidopteran sex communication. Gigascience 2024; 13:giae044. [PMID: 39028585 PMCID: PMC11258902 DOI: 10.1093/gigascience/giae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/07/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
Sex role differentiation is a widespread phenomenon. Sex pheromones are often associated with sex roles and convey sex-specific information. In Lepidoptera, females release sex pheromones to attract males, which evolve sophisticated olfactory structures to relay pheromone signals. However, in some primitive moths, sex role differentiation becomes diverged. Here, we introduce the chromosome-level genome assembly from ancestral Himalaya ghost moths, revealing a unique olfactory evolution pattern and sex role parity among Lepidoptera. These olfactory structures of the ghost moths are characterized by a dense population of trichoid sensilla, both larger male and female antennal entry parts of brains, compared to the evolutionary later Lepidoptera. Furthermore, a unique tandem of 34 odorant receptor 19 homologs in Thitarodes xiaojinensis (TxiaOr19) has been identified, which presents overlapped motifs with pheromone receptors (PRs). Interestingly, the expanded TxiaOr19 was predicted to have unconventional tuning patterns compared to canonical PRs, with nonsexual dimorphic olfactory neuropils discovered, which contributes to the observed equal sex roles in Thitarodes adults. Additionally, transposable element activity bursts have provided traceable loci landscapes where parallel diversifications occurred between TxiaOr19 and PRs, indicating that the Or19 homolog expansions were diversified to PRs during evolution and thus established the classic sex roles in higher moths. This study elucidates an olfactory prototype of intermediate sex communication from Himalaya ghost moths.
Collapse
Affiliation(s)
- Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi, 030801, China
| | - Zhong-Chen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Peng-Hua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Xin-Cheng Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Feng Dong
- Forestry College, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xi-Zhong Yan
- College of Plant Protection, Shanxi Agricultural University, Shanxi, 030801, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Nan-Ji Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| |
Collapse
|
4
|
Li Z, Linard B, Vogler AP, Yu DW, Wang Z. Phylogenetic diversity only weakly mitigates climate-change-driven biodiversity loss in insect communities. Mol Ecol 2023; 32:6147-6160. [PMID: 36271787 DOI: 10.1111/mec.16747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
To help address the underrepresentation of arthropods and Asian biodiversity from climate-change assessments, we carried out year-long, weekly sampling campaigns with Malaise traps at different elevations and latitudes in Gaoligongshan National Park in southwestern China. From these 623 samples, we barcoded 10,524 beetles and compared scenarios of climate-change-induced biodiversity loss, by designating seasonal, elevational, and latitudinal subsets of beetles as communities that plausibly could go extinct as a group, which we call "loss sets". The availability of a published mitochondrial-genome-based phylogeny of the Coleoptera allowed us to compare the loss of species diversity with and without accounting for phylogenetic relatedness. We hypothesised that phylogenetic relatedness would mitigate extinction, since the extinction of any loss set would result in the disappearance of all its species but only part of its evolutionary history, which is still extant in the remaining loss sets. We found different patterns of community clustering by season and latitude, depending on whether phylogenetic information was incorporated. However, accounting for phylogeny only slightly mitigated the amount of biodiversity loss under climate change scenarios, against our expectations: there is no phylogenetic "escape clause" for biodiversity conservation. We achieve the same results whether phylogenetic information was derived from the mitogenome phylogeny or from a de novo barcode-gene tree. We encourage interested researchers to use this data set to study lineage-specific community assembly patterns in conjunction with life-history traits and environmental covariates.
Collapse
Affiliation(s)
- Zongxu Li
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Benjamin Linard
- LIRMM, University of Montpellier, CNRS, Montpellier, France
- SPYGEN, Le Bourget-du-Lac, France
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Douglas W Yu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zhengyang Wang
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Zhou D, Gong J, Duan C, He J, Zhang Y, Xu J. Genetic structure and triazole resistance among Aspergillus fumigatus populations from remote and undeveloped regions in Eastern Himalaya. mSphere 2023; 8:e0007123. [PMID: 37341484 PMCID: PMC10449526 DOI: 10.1128/msphere.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous mold and a common human fungal pathogen. Recent molecular population genetic and epidemiological analyses have revealed evidence for long-distance gene flow and high genetic diversity within most local populations of A. fumigatus. However, little is known about the impact of regional landscape factors in shaping the population diversity patterns of this species. Here we sampled extensively and investigated the population structure of A. fumigatus from soils in the Three Parallel Rivers (TPR) region in Eastern Himalaya. This region is remote, undeveloped and sparsely populated, bordered by glaciated peaks more than 6,000 m above sea level, and contained three rivers separated by tall mountains over very short horizontal distances. A total of 358 A. fumigatus strains from 19 sites along the three rivers were isolated and analyzed at nine loci containing short tandem repeats. Our analyses revealed that mountain barriers, elevation differences, and drainage systems all contributed low but statistically significant genetic variations to the total A. fumigatus population in this region. We found abundant novel alleles and genotypes in the TPR population of A. fumigatus and significant genetic differentiation between this population and those from other parts of Yunnan and the globe. Surprisingly, despite limited human presence in this region, about 7% of the A. fumigatus isolates were resistant to at least one of the two medical triazoles commonly used for treating aspergillosis. Our results call for greater surveillance of this and other human fungal pathogens in the environment. IMPORTANCE The extreme habitat fragmentation and substantial environmental heterogeneity in the TPR region have long known to contribute to geographically shaped genetic structure and local adaptation in several plant and animal species. However, there have been limited studies of fungi in this region. Aspergillus fumigatus is a ubiquitous pathogen capable of long-distance dispersal and growth in diverse environments. In this study, using A. fumigatus as a model, we investigated how localized landscape features contribute to genetic variations in fungal populations. Our results revealed that elevation and drainage isolation rather than direct physical distances significantly impacted genetic exchange and diversity among the local A. fumigatus populations. Interestingly, within each local population, we found high allelic and genotypic diversities, and with evidence ~7% of all isolates being resistant to two medical triazoles, itraconazole and voriconazole. Given the high frequency of ARAF found in mostly natural soils of sparsely populated sites in the TPR region, close monitoring of their dynamics in nature and their effects on human health is needed.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
- Key Laboratory of Biological Genetic Resources Mining and Molecular Breeding of Qianxinan Prefecture, Minzu Normal University of Xingyi, Xingyi, China
| | - Jianchuan Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Chengyan Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Jingrui He
- School of Life Science, Yunnan University, Kunming, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Wang Z, Da W, Negi CS, Ghimire PL, Wangdi K, Yadav PK, Pubu Z, Lama L, Yarpel K, Maunsell SC, Liu Y, Kunte K, Bawa KS, Yang D, Pierce NE. Profiling, monitoring and conserving caterpillar fungus in the Himalayan region using anchored hybrid enrichment markers. Proc Biol Sci 2022; 289:20212650. [PMID: 35473372 PMCID: PMC9043734 DOI: 10.1098/rspb.2021.2650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The collection of caterpillar fungus accounts for 50–70% of the household income of thousands of Himalayan communities and has an estimated market value of $5–11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Wa Da
- Tibetan Plateau Institute of Biology, Tibet Autonomous Region, Lhasa 850001, People's Republic of China
| | - Chandra Singh Negi
- Department of Zoology, M B Government Postgraduate College, Haldwani (Nainital) 263139, Uttarakhand, India
| | - Puspa Lal Ghimire
- Asia Network for Sustainable Agriculture and Bioresources (ANSAB), Baneshwor, Kathmandu, Nepal
| | - Karma Wangdi
- Ugyen Wangchuck Institute for Conservation and Environmental Research, Lamai Goempa, Bumthang, Jakar 32001, Bhutan
| | - Pramod K Yadav
- Department of Parks, Recreation, and Tourism Management, Clemson University, Clemson, SC 29634-0735, USA
| | - Zhuoma Pubu
- Tibetan Plateau Institute of Biology, Tibet Autonomous Region, Lhasa 850001, People's Republic of China
| | - Laiku Lama
- Himalayan Herbs Traders, Baluwatar-4 Bagta Marga 161, Kathmandu, Nepal
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, People's Republic of China
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Kamaljit S Bawa
- University of Massachusetts, Boston, MA 02125, USA.,Ashoka Trust for Research in Ecology and the Environment, Bangalore 560024, India
| | - Darong Yang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, People's Republic of China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|