1
|
Hansen FB, Secher N, Mattson T, Løfgren B, Simonsen U, Granfeldt A. Effect of the KCa3.1 blocker, senicapoc, on cerebral edema and cardiovascular function after cardiac arrest - A randomized experimental rat study. Resusc Plus 2021; 6:100111. [PMID: 34223371 PMCID: PMC8244250 DOI: 10.1016/j.resplu.2021.100111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/30/2022] Open
Abstract
Senicapoc was successfully administered intravenously. Senicapoc did not reduce cerebral edema 4 h after cardiac arrest. Senicapoc did not increase mean arterial pressure within 4 h from resuscitation.
Aim Formation of cerebral edema and cardiovascular dysfunction may worsen brain injury following cardiac arrest. We hypothesized that administration of the intermediate calcium-activated potassium (KCa3.1) channel blocker, senicapoc, would reduce cerebral edema and augment mean arterial pressure in the early post-resuscitation period. Method Male Sprague-Dawley rats, aged 11–15 weeks, were utilized in the study. Rats were exposed to 8 min of asphyxial cardiac arrest. Shortly after resuscitation, rats were randomized to receive either vehicle or senicapoc (10 mg/kg) intravenously. The primary outcome was cerebral wet to dry weight ratio 4 h after resuscitation. Secondary outcomes included mean arterial pressure, cardiac output, norepinephrine dose, inflammatory cytokines and neuron specific enolase levels. Additionally, a sub-study was conducted to validate intravenous administration of senicapoc. Results The sub-study revealed that senicapoc-treated rats maintained a significantly higher mean arterial pressure during administration of SKA-31 (a KCa3.1 channel opener). The plasma concentration of senicapoc was 1060 ± 303 ng/ml 4 h after administration. Senicapoc did not reduce cerebral edema or augment mean arterial pressure 4 h after resuscitation. Likewise, cardiac function and norepinephrine dose did not vary between groups. Inflammatory cytokines and neuron specific enolase levels increased in both groups after resuscitation with no difference between groups. Senicapoc enhanced the PaO2/FiO2 ratio significantly 4 h after resuscitation. Conclusion Senicapoc was successfully administered intravenously after resuscitation, but did not reduce cerebral edema or increase mean arterial pressure in the early post-resuscitation period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark
| | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Thomas Mattson
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Bo Løfgren
- Department of Internal Medicine, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark.,Research Center for Emergency Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus N, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Secher N, Østergaard L, Tønnesen E, Hansen FB, Granfeldt A. Impact of age on cardiovascular function, inflammation, and oxidative stress in experimental asphyxial cardiac arrest. Acta Anaesthesiol Scand 2018; 62:49-62. [PMID: 29072303 DOI: 10.1111/aas.13014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Advanced age is an independent predictor of poor outcome after cardiac arrest (CA). From experimental studies of regional ischemia-reperfusion injury, advanced age is associated with larger infarct size, reduced organ function, and augmented oxidative stress. The objective of this study was to investigate the effect of age on cardiovascular function, oxidative stress, inflammation, and endothelial activation after CA representing global ischemia-reperfusion. METHODS Aged (26 months) and young (5 months) rats were subjected to 8 min of asphyxia induced CA, resuscitated and observed for 360 min. Left ventricular pressure-derived cardiac function was measured at baseline and 360 min after CA. Blood samples obtained at baseline, 120 min, and 360 min after CA were analyzed for IL-1β, IL-6, IL-10, TNF-α, elastase, sE-selectin, sL-selectin, sI-CAM1, hemeoxygenase-1 (HO-1) and protein carbonyl. Tissue samples of brain, heart, kidney, and lung were analyzed for HO-1. RESULTS Cardiac function, evaluated by dP/dtmax and dP/dtmin , was decreased after CA in both young and aged rats, with no group differences. Mean arterial pressure increased after CA in young, but not old rats. Aged rats showed significantly higher plasma levels of elastase and sE-selectin after CA, and there was a significant different development over time between groups for IL-6 and IL-10. Young rats showed higher levels of HO-1 in plasma and renal tissue after CA. CONCLUSION In a rat model of asphyxial CA, advanced age is associated with an attenuated hyperdynamic blood pressure response and increased endothelial activation.
Collapse
Affiliation(s)
- N. Secher
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
- Department of Internal Medicine; Horsens Regional Hospital; Horsens Denmark
| | - L. Østergaard
- Center of Functionally Integrative Neuroscience; Aarhus University; Aarhus C Denmark
| | - E. Tønnesen
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| | - F. B. Hansen
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| | - A. Granfeldt
- Department of Anaesthesiology and Intensive Care Medicine; Aarhus University Hospital; Aarhus C Denmark
| |
Collapse
|
3
|
Krupičková P, Mormanová Z, Bouček T, Belza T, Šmalcová J, Bělohlávek J. Microvascular perfusion in cardiac arrest: a review of microcirculatory imaging studies. Perfusion 2017; 33:8-15. [DOI: 10.1177/0267659117723455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrest represents a leading cause of mortality and morbidity in developed countries. Extracorporeal cardiopulmonary resuscitation (ECPR) increases the chances for a beneficial outcome in victims of refractory cardiac arrest. However, ECPR and post-cardiac arrest care are affected by high mortality rates due to multi-organ failure syndrome, which is closely related to microcirculatory disorders. Therefore, microcirculation represents a key target for therapeutic interventions in post-cardiac arrest patients. However, the evaluation of tissue microcirculatory perfusion is still demanding to perform. Novel videomicroscopic technologies (Orthogonal polarization spectral, Sidestream dark field and Incident dark field imaging) might offer a promising way to perform bedside microcirculatory assessment and therapy monitoring. This review aims to summarise the recent body of knowledge on videomicroscopic imaging in a cardiac arrest setting and to discuss the impact of extracorporeal reperfusion and other therapeutic modalities on microcirculation.
Collapse
Affiliation(s)
- Petra Krupičková
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Department of Neonatology with NICU, Motol University Hospital, Prague, Czech Republic
| | - Zuzana Mormanová
- Department of Neonatology, Krajska Nemocnice Liberec, a. s., Liberec, Czech Republic
| | - Tomáš Bouček
- 2nd Department of Medicine - Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Belza
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Šmalcová
- 2nd Department of Medicine - Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Bělohlávek
- 2nd Department of Medicine - Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Neurologic Recovery After Cardiac Arrest: a Multifaceted Puzzle Requiring Comprehensive Coordinated Care. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:52. [PMID: 28536893 DOI: 10.1007/s11936-017-0548-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Surviving cardiac arrest (CA) requires a longitudinal approach with multiple levels of responsibility, including fostering a culture of action by increasing public awareness and training, optimization of resuscitation measures including frequent updates of guidelines and their timely implementation into practice, and optimization of post-CA care. This clearly goes beyond resuscitation and targeted temperature management. Brain-directed physiologic goals should dictate the post-CA management, as accumulating evidence suggests that the degree of hypoxic brain injury is the main determinant of survival, regardless of the etiology of arrest. Early assessment of the need for further hemodynamic and electrophysiologic cardiac interventions, adjusting ventilator settings to avoid hyperoxia/hypoxia while targeting high-normal to mildly elevated PaCO2, maintaining mean arterial blood pressures >65 mmHg, evaluating for and treating seizures, maintaining euglycemia, and aggressively pursuing normothermia are key steps in reducing the bioenergetic failure that underlies secondary brain injury. Accurate neuroprognostication requires a multimodal approach with standardized assessments accounting for confounders while recognizing the importance of a delayed prognostication when there is any uncertainty regarding outcome. The concept of a highly specialized post-CA team with expertise in the management of post-CA syndrome (mindful of the brain-directed physiologic goals during the early post-resuscitation phase), TTM, and neuroprognostication, guiding the comprehensive care to the CA survivor, is likely cost-effective and should be explored by institutions that frequently care for these patients. Finally, providing tailored rehabilitation care with systematic reassessment of the needs and overall goals is key for increasing independence and improving quality-of-life in survivors, thereby also alleviating the burden on families. Emerging evidence from multicenter collaborations advances the field of resuscitation at an incredible pace, challenging previously well-established paradigms. There is no more room for "conventional wisdom" in saving the survivors of cardiac arrest.
Collapse
|
5
|
Hansen FB, Secher N, Jensen MS, Østergaard L, Tønnesen E, Granfeldt A. Cortical spreading depolarizations in the postresuscitation period in a cardiac arrest male rat model. J Neurosci Res 2017; 95:2040-2050. [PMID: 28198552 DOI: 10.1002/jnr.24033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Neurological injury develops over days following cardiac arrest (CA); however, the exact mechanisms remain unknown. After stroke or trauma, the progression of neurological injury is associated with cortical-spreading depolarizations (CSDs). The objective was to investigate whether CA and subsequent resuscitation in rats are associated with 1) the development of spontaneous negative direct current (DC) shifts indicative of CSDs, and 2) changes in artificially induced CSDs in the postresuscitation period. Male Sprague-Dawley rats were randomized into four groups: 1) CA 90, 2) Control 90, 3) CA 360, and 4) Control 360. Following 8 min of asphyxial CA, animals were resuscitated using adrenaline, ventilation, and chest compressions. Animals were observed for 90 or 360 min, respectively, before a 210-min data collection period. Cortical potentials were recorded through burr holes over the right hemisphere. Animals were intubated and monitored with invasive blood pressure, ECG, and arterial blood gas samples throughout the study. Spontaneous DC shifts occurred in only 1 of the 14 CA animals. In control animals, DC shifts were easy to induce, and their shape was highly uniform, consistent with that of classical CSDs. In CA animals, significantly fewer DC shifts could be induced, and their shape was profoundly altered compared with controls. We observed frequent epileptiform discharges and temporal clusters of activity. Spontaneous CSDs were not a consistent finding in CA animals. Instead, spontaneous epileptiform discharges and temporal cluster of activity were observed, while the shapes of induced DC shifts were profoundly altered compared with controls. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark.,Department of Accident and Emergency Medicine, Regional Hospital Horsens, Horsens, Denmark
| | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | | | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Else Tønnesen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Krupičková P, Mlček M, Huptych M, Mormanová Z, Bouček T, Belza T, Lacko S, Černý M, Neužil P, Kittnar O, Linhart A, Bělohlávek J. Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study. J Transl Med 2016; 14:163. [PMID: 27277706 PMCID: PMC4898356 DOI: 10.1186/s12967-016-0934-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
Background Current research highlights the role of microcirculatory disorders in post-cardiac arrest patients. Affected microcirculation shows not only dissociation from systemic hemodynamics but also strong connection to outcome of these patients. However, only few studies evaluated microcirculation directly during cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). The aim of our experimental study in a porcine model was to describe sublingual microcirculatory changes during CA and CPR using recent videomicroscopic technology and provide a comparison to parameters of global hemodynamics. Methods Cardiac arrest was induced in 18 female pigs (50 ± 3 kg). After 3 min without treatment, 5 min of mechanical CPR followed. Continuous hemodynamic monitoring including systemic blood pressure and carotid blood flow was performed and blood lactate was measured at the end of baseline and CPR. Sublingual microcirculation was assessed by the Sidestream Dark Field (SDF) technology during baseline, CA and CPR. Following microcirculatory parameters were assessed off-line separately for capillaries (≤20 µm) and other vessels: total and perfused vessel density (TVD, PVD), proportion of perfused vessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI). Results In comparison to baseline the CA small vessel microcirculation was only partially preserved: TVD 15.64 (13.59–18.48) significantly decreased to 12.51 (10.57–13.98) mm/mm2, PVD 15.57 (13.56–17.80) to 5.53 (4.17–6.60) mm/mm2, PPV 99.64 (98.05–100.00) to 38.97 (27.60–46.29) %, MFI 3.00 (3.00–3.08) to 1.29 (1.08–1.58) and HI increased from 0.08 (0.00–0.23) to 1.5 (0.71–2.00), p = 0.0003 for TVD and <0.0001 for others, respectively. Microcirculation during ongoing CPR in small vessels reached 59–85 % of the baseline values: TVD 13.33 (12.11–15.11) mm/mm2, PVD 9.34 (7.34–11.52) mm/mm2, PPV 72.34 (54.31–87.87) %, MFI 2.04 (1.58–2.42), HI 0.65 (0.41–1.07). The correlation between microcirculation and global hemodynamic parameters as well as to lactate was only weak to moderate (i.e. Spearman’s ρ 0.02–0.51) and after adjustment for multiple correlations it was non-significant. Conclusions Sublingual microcirculatory parameters did not correlate with global hemodynamic parameters during simulated porcine model of CA and CPR. SDF imaging provides additional information about tissue perfusion in the course of CPR. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0934-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petra Krupičková
- First Faculty of Medicine, Charles University in Prague, Katerinska 1660/32, 121 08, Prague 2, Czech Republic.,Department of Neonatology with NICU, University Hospital in Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Mikuláš Mlček
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague 2, Czech Republic
| | - Michal Huptych
- Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, Zikova 1903/4, 166 36, Prague 6, Czech Republic
| | - Zuzana Mormanová
- Department of Neonatology, Krajska nemocnice Liberec, a.s., Husova 357/10, 460 63, Liberec, Czech Republic
| | - Tomáš Bouček
- 2nd Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00, Prague 2, Czech Republic
| | - Tomáš Belza
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague 2, Czech Republic
| | - Stanislav Lacko
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague 2, Czech Republic
| | - Miloš Černý
- Department of Neonatology with NICU, University Hospital in Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Petr Neužil
- Department of Cardiology, Na Homolce Hospital, Roentgenova 2, 150 30, Prague 5, Czech Republic
| | - Otomar Kittnar
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Albertov 5, 128 00, Prague 2, Czech Republic
| | - Aleš Linhart
- 2nd Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00, Prague 2, Czech Republic
| | - Jan Bělohlávek
- 2nd Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 00, Prague 2, Czech Republic.
| |
Collapse
|