1
|
Wang Y, Shen L, Sun M. Prognostic Significance and Functional Mechanism of UTS2 in Glioblastoma Multiforme. Curr Cancer Drug Targets 2025; 25:636-647. [PMID: 38265405 DOI: 10.2174/0115680096275291231226081320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 01/25/2024]
Abstract
AIM We aimed to explore the role of urotensin 2 (UTS2) in glioblastoma (GBM). BACKGROUND GBM is the most malignant primary brain cancer with a poor prognosis. Previous studies have suggested that GBM vessels undergo dynamic remodeling modulated by tumor vasodilation and vasoconstriction instead of tumor angiogenesis. OBJECTIVE Here, we have first investigated the expression and function of UTS2, a potent vasoconstrictor, in GBM. METHODS The mRNA expression profiles and clinical information of GBM patients were obtained from the TCGA database. The clinical relevance of UTS2 was explored by the Mann-Whitney U test and Cox hazard regression survival test. We further explored the role of UTS2 in GBM cell proliferation, migration, and tumor immune microenvironment. Moreover, we established the in vivo mice model to validate its oncogenic effects on GBM progression. RESULTS Although we did not find significant correlations between UTS2 expression and patients' clinical characteristics, UTS2 was identified as a valid independent prognostic indicator according to multivariate survival analysis. Knockdown of UTS2 resulted in decreased GBM cell proliferation and migration. In addition, functional enrichment analysis implied UTS2 to be involved in the regulation of the immune microenvironment. In vivo studies showed that UTS2 knockdown suppressed GBM xenograft growth, highlighting the tumor-promoting effects of UTS2 on GBM. CONCLUSION Our study identified that UTS2 could predict the prognosis of GBM patients and provided evidence regarding its oncogenic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanfei Wang
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| | - Langping Shen
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| | - Mingzhong Sun
- Laboratory Department, Yancheng Third People's Hospital, Yancheng 224008, China
| |
Collapse
|
2
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 PMCID: PMC9553107 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
3
|
Human Cystathionine γ-Lyase Is Inhibited by s-Nitrosation: A New Crosstalk Mechanism between NO and H 2S. Antioxidants (Basel) 2021; 10:antiox10091391. [PMID: 34573023 PMCID: PMC8467691 DOI: 10.3390/antiox10091391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
The ‘gasotransmitters’ hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) act as second messengers in human physiology, mediating signal transduction via interaction with or chemical modification of protein targets, thereby regulating processes such as neurotransmission, blood flow, immunomodulation, or energy metabolism. Due to their broad reactivity and potential toxicity, the biosynthesis and breakdown of H2S, NO, and CO are tightly regulated. Growing evidence highlights the active role of gasotransmitters in their mutual cross-regulation. In human physiology, the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are prominent H2S enzymatic sources. While CBS is known to be inhibited by NO and CO, little is known about CSE regulation by gasotransmitters. Herein, we investigated the effect of s-nitrosation on CSE catalytic activity. H2S production by recombinant human CSE was found to be inhibited by the physiological nitrosating agent s-nitrosoglutathione (GSNO), while reduced glutathione had no effect. GSNO-induced inhibition was partially reverted by ascorbate and accompanied by the disappearance of one solvent accessible protein thiol. By combining differential derivatization procedures and mass spectrometry-based analysis with functional assays, seven out of the ten protein cysteine residues, namely Cys84, Cys109, Cys137, Cys172, Cys229, Cys307, and Cys310, were identified as targets of s-nitrosation. By generating conservative Cys-to-Ser variants of the identified s-nitrosated cysteines, Cys137 was identified as most significantly contributing to the GSNO-mediated CSE inhibition. These results highlight a new mechanism of crosstalk between gasotransmitters.
Collapse
|
4
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
6
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
7
|
Głowacka U, Brzozowski T, Magierowski M. Synergisms, Discrepancies and Interactions between Hydrogen Sulfide and Carbon Monoxide in the Gastrointestinal and Digestive System Physiology, Pathophysiology and Pharmacology. Biomolecules 2020; 10:445. [PMID: 32183095 PMCID: PMC7175135 DOI: 10.3390/biom10030445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endogenous gas transmitters, hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) are important signaling molecules known to exert multiple biological functions. In recent years, the role of H2S, CO and NO in regulation of cardiovascular, neuronal and digestive systems physiology and pathophysiology has been emphasized. Possible link between these gaseous mediators and multiple diseases as well as potential therapeutic applications has attracted great attention from biomedical scientists working in many fields of biomedicine. Thus, various pharmacological tools with ability to release CO or H2S were developed and implemented in experimental animal in vivo and in vitro models of many disorders and preliminary human studies. This review was designed to review signaling functions, similarities, dissimilarities and a possible cross-talk between H2S and CO produced endogenously or released from chemical donors, with special emphasis on gastrointestinal digestive system pathologies prevention and treatment.
Collapse
Affiliation(s)
| | | | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Cracow, Poland; (U.G.); (T.B.)
| |
Collapse
|
8
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Wysokiński D, Lewandowska P, Zątak D, Juszczak M, Kluska M, Lizińska D, Rudolf B, Woźniak K. Photoactive CO-releasing complexes containing iron - genotoxicity and ability in HO-1 gene induction in HL-60 cells. Toxicol Res (Camb) 2019; 8:544-551. [PMID: 31367337 PMCID: PMC6621133 DOI: 10.1039/c9tx00070d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
This paper presents the results of research on the biological properties of two photoactive CO-releasing molecules containing iron, i.e. (η5-C5H5)Fe(CO)2(η1-N-maleimidato) (complex A) and (η5-C5H5)Fe(CO)2(η1-N-succinimidato) (complex B). We studied their cytotoxicity, genotoxicity and the ability of inducing the HO-1 gene in HL-60 cells. We also investigated the kinetics of DNA damage repair induced by complexes A and B. We demonstrated that complex B was not toxic to HL-60 cells in high doses (above 100 μM). The ability to induce DNA damage was higher for complex A. Importantly, there was no difference in irradiated and non-irradiated cells for both complexes. DNA damage induced by complex B was repaired efficiently, while the repair of DNA damage induced by complex A was disturbed. Complex B had a minor effect on HO-1 gene expression (less than 2-fold induction), while complex A had induced HO-1 gene expression to a great extent (over 17-fold for 10 μM) - similarly in irradiated and non-irradiated HL-60 cells. The results of our research indicate that the ability of both complexes to damage DNA and to upregulate HO-1 gene expression is not related to the release of CO. Further research is needed to test whether these compounds can be considered as potential CO carriers in humans.
Collapse
Affiliation(s)
- Daniel Wysokiński
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Patrycja Lewandowska
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Daria Zątak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Michał Juszczak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Magdalena Kluska
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| | - Daria Lizińska
- Department of Organic Chemistry , Faculty of Chemistry , University of Lodz , 91-403 Lodz , Poland
| | - Bogna Rudolf
- Department of Organic Chemistry , Faculty of Chemistry , University of Lodz , 91-403 Lodz , Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics , Faculty of Biology and Environmental Protection , University of Lodz , 90-236 , Lodz , Poland .
| |
Collapse
|
10
|
Yi M, Ban Y, Tan Y, Xiong W, Li G, Xiang B. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab 2018; 20:1-13. [PMID: 30553771 PMCID: PMC6358545 DOI: 10.1016/j.molmet.2018.11.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Cancer cells favor the use of less efficient glycolysis rather than mitochondrial oxidative phosphorylation to metabolize glucose, even in oxygen-rich conditions, a distinct metabolic alteration named the Warburg effect or aerobic glycolysis. In adult cells, bifunctional 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB) family members are responsible for controlling the steady-state cytoplasmic levels of fructose-2,6-bisphosphate, which allosterically activates 6-phosphofructo-1-kinase, the key enzyme catalyzing the rate-limiting reaction of glycolysis. PFKFB3 and PFKFB4 are the two main isoenzymes overexpressed in various human cancers. Scope of review In this review, we summarize recent findings on the glycolytic and extraglycolytic roles of PFKFB3 and PFKFB4 in cancer progression and discuss potential therapies for targeting of PFKFB3 and PFKFB4. Major conclusions PFKFB3 has the highest kinase activity to shunt glucose toward glycolysis, whereas PFKFB4 has more FBPase-2 activity, redirecting glucose toward the pentose phosphate pathway, providing reducing power for lipid biosynthesis and scavenging reactive oxygen species. Co-expression of PFKFB3 and PFKFB4 provides sufficient glucose metabolism to satisfy the bioenergetics demand and redox homeostasis requirements of cancer cells. Various reversible post-translational modifications of PFKFB3 enable cancer cells to flexibly adapt glucose metabolism in response to diverse stress conditions. In addition to playing important roles in tumor cell glucose metabolism, PFKFB3 and PFKFB4 are widely involved in multiple biological processes, such as cell cycle regulation, autophagy, and transcriptional regulation in a non-glycolysis-dependent manner.
Collapse
Affiliation(s)
- Mei Yi
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, The Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, 410011, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, The Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Hydrogen Sulfide Biochemistry and Interplay with Other Gaseous Mediators in Mammalian Physiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6290931. [PMID: 30050658 PMCID: PMC6040266 DOI: 10.1155/2018/6290931] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a relevant signaling molecule in physiology, taking its seat as a bona fide gasotransmitter akin to nitric oxide (NO) and carbon monoxide (CO). After being merely regarded as a toxic poisonous molecule, it is now recognized that mammalian cells are equipped with sophisticated enzymatic systems for H2S production and breakdown. The signaling role of H2S is mainly related to its ability to modify different protein targets, particularly by promoting persulfidation of protein cysteine residues and by interacting with metal centers, mostly hemes. H2S has been shown to regulate a myriad of cellular processes with multiple physiological consequences. As such, dysfunctional H2S metabolism is increasingly implicated in different pathologies, from cardiovascular and neurodegenerative diseases to cancer. As a highly diffusible reactive species, the intra- and extracellular levels of H2S have to be kept under tight control and, accordingly, regulation of H2S metabolism occurs at different levels. Interestingly, even though H2S, NO, and CO have similar modes of action and parallel regulatory targets or precisely because of that, there is increasing evidence of a crosstalk between the three gasotransmitters. Herein are reviewed the biochemistry, metabolism, and signaling function of hydrogen sulfide, as well as its interplay with the other gasotransmitters, NO and CO.
Collapse
|
12
|
Cahill MA, Medlock AE. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J Steroid Biochem Mol Biol 2017; 171:11-33. [PMID: 28104494 DOI: 10.1016/j.jsbmb.2016.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/05/2023]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is located in many different subcellular locations with many different attested and probably location-specific functions. PGRMC1 was recently identified in the mitochondrial outer membrane where it interacts with ferrochelatase, the last enzyme in the heme synthetic pathway. It has been proposed that PGRMC1 may act as a chaperone to shuttle newly synthesized heme from the mitochondrion to cytochrome P450 (cyP450) enzymes. Here we consider potential roles that PGRMC1 may play in transferring heme, and other small hydrophobic ligands such as cholesterol and steroids, between the hydrophobic compartment of the membrane lipid bilayer interior to aqueous proteins, and perhaps to the membranes of other organelles. We review the synthesis and roles of especially PGRMC1- and cyP450-bound heme, the sources and transport of cholesterol, the involvement of PGRMC1 in cholesterol regulation, and the production of the first progestogen pregnenolone from cholesterol. We also show by clustering by inferred models of evolution (CLIME) analysis that PGRMC1 and related proteins exhibit co-evolution with a series of cyP450 enzymes, as well as a group of mitochondrial proteins lacking in several parasitic protist groups. Altogether, PGRMC1 is implicated with important roles in sterol synthesis and energy regulation that are dispensable in certain parasites. Some novel hypothetical models for PGRMC1 function are proposed to direct future investigative research.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, 30602-1111, USA
| |
Collapse
|
13
|
A Clinically Relevant Variant of the Human Hydrogen Sulfide-Synthesizing Enzyme Cystathionine β-Synthase: Increased CO Reactivity as a Novel Molecular Mechanism of Pathogenicity? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8940321. [PMID: 28421128 PMCID: PMC5381205 DOI: 10.1155/2017/8940321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/21/2022]
Abstract
The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5′-phosphate- (PLP-) dependent cystathionine β-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria.
Collapse
|
14
|
Kabe Y, Yamamoto T, Kajimura M, Sugiura Y, Koike I, Ohmura M, Nakamura T, Tokumoto Y, Tsugawa H, Handa H, Kobayashi T, Suematsu M. Cystathionine β-synthase and PGRMC1 as CO sensors. Free Radic Biol Med 2016; 99:333-344. [PMID: 27565814 DOI: 10.1016/j.freeradbiomed.2016.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022]
Abstract
Heme oxygenase (HO) is a mono-oxygenase utilizing heme and molecular oxygen (O2) as substrates to generate biliverdin-IXα and carbon monoxide (CO). HO-1 is inducible under stress conditions, while HO-2 is constitutive. A balance between heme and CO was shown to regulate cell death and survival in many experimental models. However, direct molecular targets to which CO binds to regulate cellular functions remained to be fully examined. We have revealed novel roles of CO-responsive proteins, cystathionine β-synthase (CBS) and progesterone receptor membrane component 1 (PGRMC1), in regulating cellular functions. CBS possesses a prosthetic heme that allows CO binding to inhibit the enzyme activity and to regulate H2S generation and/or protein arginine methylation. On the other hand, in response to heme accumulation in cells, PGRMC1 forms a stable dimer through stacking interactions of two protruding heme molecules. Heme-mediated PGRMC1 dimerization is necessary to interact with EGF receptor and cytochromes P450 that determine cell proliferation and xenobiotic metabolism. Furthermore, CO interferes with PGRMC1 dimerization by dissociating the heme stacking, and thus results in modulation of cell responses. This article reviews the intriguing functions of these two proteins in response to inducible and constitutive levels of CO with their pathophysiological implications.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayumi Kajimura
- Department of Biology, Keio University School of Medicine, Yokohama 223-8521, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuyo Ohmura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuhito Tokumoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Admission Center, Saitama Medical University, Moroyama 350-0495, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|