1
|
Bolger-Chen M, Lopera Higuita M, Pendexter CA, Mojoudi M, Uygun K, Tessier SN. Enhancing outcomes in Langendorff-perfused rodent hearts through perfusion parameter optimization. Sci Rep 2025; 15:15935. [PMID: 40335499 PMCID: PMC12059170 DOI: 10.1038/s41598-025-00159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Despite important advancements in addressing cardiovascular diseases (CVDs), there has been an overall lack of progress in the field, leading to a slower decline in the rate of CVDs related deaths, and even an increase for some risk groups (e.g. increase in stroke mortality) exacerbated by an aging and obese population. While a multi-faceted problem, this deceleration may be influenced by the preferred model systems utilized in translation research. Cardiac cell lines, although easier to handle, lack biological accuracy due to the unnatural modifications required for successful culture and may not recapitulate complex 3-dimensional structural and environmental factors. At the same time, whole animal experimentation provides unwanted complexity during initial scientific development. Alternatively, ex vivo perfusion of isolated rodent hearts provides the needed biological accuracy with decreased organismal complexity. This platform facilitates the evaluation of the isolated heart, without neuro-reflexes and/or humoral contributions, unveiling the direct effects of stimuli in heart function/homeostasis. This manuscript leverages the wide array of perfusion parameters (i.e. perfusate, flow rate, coronary pressures), to demonstrate the capability of ex vivo heart perfusion protocols to accommodate a large range of experimental needs. Through this work, it was determined that the use of physiological perfusion pressures leads to increased left ventricular (LV) pressures but results in a loss of function over time, making it ideal conditions for organ assessment. Conversely, lower-than-physiological perfusion pressures lead to decreased LV pressures but prevent loss of function over time, which is preferable when longer perfusion times are relevant to experimental needs. Similarly, the use of adenosine as a pharmacological intervention was found to decrease both edema formation and inflammatory responses. In contrast, the use of packed red blood cells as oxygen carriers appears to induce a pro-inflammatory response and cause greater cardiac damage, particularly when combined with low perfusion pressures.
Collapse
Affiliation(s)
- Maya Bolger-Chen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA
| | - Manuela Lopera Higuita
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
2
|
Puthumana Melepattu M, Maîtrejean G, Wagner C, Podgorski T. Influence of erythrocyte density on aggregability as a marker of cell age: Dissociation dynamics in extensional flow. J Biomech 2025; 183:112603. [PMID: 40107190 DOI: 10.1016/j.jbiomech.2025.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Blood rheology and microcirculation are strongly influenced by red blood cell (RBC) aggregation. The aggregability of RBCs can vary significantly due to factors such as their mechanical and membrane surface properties, which are affected by cell aging in vivo. In this study, we investigate RBC aggregability as a function of their density, a marker of cell age and mechanical properties, by separating RBCs from healthy donors into different density fractions using Percoll density gradient centrifugation. We examine the dissociation rates of aggregates in a controlled medium supplemented with Dextran, employing an extensional flow technique based on hyperbolic microfluidic constrictions and image analysis, assisted by a convolutional neural network (CNN). In contrast to other techniques, our microfluidic experimental approach highlights the behavior of RBC aggregates in dynamic flow conditions relevant to microcirculation. Our results demonstrate that aggregate dissociation is strongly correlated with cell density and that aggregates formed from the denser fractions of RBCs are significantly more robust than those from the average cell population. This study provides insight into the effect of RBC aging in vivo on their mechanical properties and aggregability, underscoring the importance of further exploration of RBC aggregation in the context of cellular senescence and its potential implications for hemodynamics. Additionally, it suggests that this technique can complement existing methods for improved evaluation of RBC aggregability in health and disease.
Collapse
Affiliation(s)
| | | | - Christian Wagner
- Universität des Saarlandes, Department of Experimental Physics, Saarbrücken, 66123, Germany.
| | - Thomas Podgorski
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, 38000, France.
| |
Collapse
|
3
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
4
|
Varga A, Matrai AA, Bedocs-Barath B, Fazekas LA, Brasil FS, Mehta A, Vanyolos E, Deak A, Lesznyak T, Peto K, Nemeth N. Local and Systemic Micro-Rheological Changes during Intestinal Anastomosis Operation: A Metabolic Dependence in an Experimental Model. Metabolites 2024; 14:458. [PMID: 39195554 DOI: 10.3390/metabo14080458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorheological factors may show arterio-venous differences. Alterations in acid-base and metabolic parameters may also influence these factors. However, little is known about changes in micro-rheological parameters during abdominal surgery, influencing splanchnic circulation. In anesthetized pigs, the external jugular vein, femoral artery and vein were cannulated unilaterally, and paramedian laparotomy was performed. In the anastomosis group, after resecting a bowel segment, end-to-end jejuno-jejunostomy was completed. Blood samples (from cannulas and by puncturing the portal vein) were taken before and after the intervention. Hematological, acid-base and blood gas parameters, metabolites, red blood cell (RBC) deformability and aggregation were determined. The highest hematocrit was found in portal blood, increasing further by the end of operation. A significant pH decrease was seen, and portal blood showed the highest lactate and creatinine concentration. The highest RBC aggregation values were found in arterial, the lowest in renal venous blood. The RBC aggregation increased with higher lactate concentration and lower pH. Osmotic gradient deformability declined, with the lowest values in portal and renal venous samples. In conclusion, micro-rheological parameters showed arterio-venous and porto-renal venous differences, influenced by oxygenation level, pH and lactate concentration. The intestinal anastomosis operation caused an immediate micro-rheological deterioration with portal venous dominancy in this experiment.
Collapse
Affiliation(s)
- Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Felipe Salignac Brasil
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Aashna Mehta
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Tamas Lesznyak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Sandesha VD, Naveen P, Manikanta K, Mahalingam SS, Girish KS, Kemparaju K. Hump-Nosed Pit Viper ( Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine. Cells 2024; 13:994. [PMID: 38920625 PMCID: PMC11201549 DOI: 10.3390/cells13120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.
Collapse
Affiliation(s)
- Vaddaragudisalu D. Sandesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Puttaswamy Naveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, Karnataka, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| |
Collapse
|
6
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Krotenkova MV, Burmak AG, Gnedovskaya EV. L-Arginine-eNOS-NO Functional System in Brain Damage and Cognitive Impairments in Cerebral Small Vessel Disease. Int J Mol Sci 2023; 24:14537. [PMID: 37833984 PMCID: PMC10572456 DOI: 10.3390/ijms241914537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a significant cause of cognitive impairment (CI), disability, and mortality. The insufficient effectiveness of antihypertensive therapy in curbing the disease justifies the search for potential targets for modifying therapy and indicators supporting its use. Using a laser-assisted optical rotational cell analyzer (LORRCA, Mechatronics, The Netherlands), the rheological properties and deformability of erythrocytes before and after incubation with 10 μmol/L of L-arginine, the nitric oxide (NO) donor, blood-brain barrier (BBB) permeability assessed by dynamic contrast-enhanced MRI, clinical, and MRI signs were studied in 73 patients with CSVD (48 women, mean age 60.1 ± 6.5 years). The control group consisted of 19 volunteers (14 women (73.7%), mean age 56.9 ± 6.4 years). The erythrocyte disaggregation rate (y-dis) after incubation with L-arginine showed better performance than other rheological characteristics in differentiating patients with reduced NO bioavailability/NO deficiency by its threshold values. Patients with y-dis > 113 s-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in grey matter and normal-appearing white matter (NAWM). A test to assess changes in the erythrocyte disaggregation rate after incubation with L-arginine can be used to identify patients with impaired NO bioavailability. L-arginine may be part of a therapeutic strategy for CSVD with CI.
Collapse
Affiliation(s)
| | | | | | | | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe Shosse, 125367 Moscow, Russia; (L.A.D.); (A.A.S.); (K.V.S.); (E.I.K.); (M.V.K.); (A.G.B.); (E.V.G.)
| | | | | | | |
Collapse
|
7
|
Kang YJ. Biomechanical Investigation of Red Cell Sedimentation Using Blood Shear Stress and Blood Flow Image in a Capillary Chip. MICROMACHINES 2023; 14:1594. [PMID: 37630130 PMCID: PMC10456426 DOI: 10.3390/mi14081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Blood image intensity has been used to detect erythrocyte sedimentation rate (ESR). However, it does not give information on the biophysical properties of blood samples under continuous ESR. In this study, to quantify mechanical variations of blood under continuous ESR, blood shear stress and blood image intensity were obtained by analyzing blood flows in the capillary channel. A blood sample is loaded into a driving syringe to demonstrate the proposed method. The blood flow rate is set in a periodic on-off pattern. A blood sample is then supplied into a capillary chip, and microscopic blood images are captured at specific intervals. Blood shear stress is quantified from the interface of the bloodstream in the coflowing channel. τ0 is defined as the maximum shear stress obtained at the first period. Simultaneously, ESRτ is then obtained by analyzing temporal variations of blood shear stress for every on period. AII is evaluated by analyzing the temporal variation of blood image intensity for every off period. According to the experimental results, a shorter period of T = 4 min and no air cavity contributes to the high sensitivity of the two indices (ESRτ and AII). The τ0 exhibits substantial differences with respect to hematocrits (i.e., 30-50%) as well as diluents. The ESRτ and AII showed a reciprocal relationship with each other. Three suggested properties represented substantial differences for suspended blood samples (i.e., hardened red blood cells, different concentrations of dextran solution, and fibrinogen). In conclusion, the present method can detect variations in blood samples under continuous ESR effectively.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
8
|
Antonova N, Khristov K, Alexandrova A, Muravyov A, Velcheva I. Development of experimental microfluidic device and methodology for assessing microrheological properties of blood. Clin Hemorheol Microcirc 2022; 83:231-245. [PMID: 36565107 DOI: 10.3233/ch-221631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Microfluidics is a useful tool for investigating blood microrheology. The study aimed to present the development of a microfluidic device for assessing the microrheological properties of blood cells' suspensions and its application in patients with T2DM. METHODS A new microfluidic device was elaborated, connected to a system, including a microscope with a digital camera, a pump with a manometer and a computer with specially developed software. Blood cells' suspensions were investigated in a microchamber between two parallel optical slides within a 100μm distance. The motion of the blood cells in the microchamber was observed by the microscope and it was recorded and visualized by a digital camera. A method for evaluating the deformability of blood cells and a device for its implementation were used [1]. RESULTS The pressure and flow rate ranges in the microfluidic device were specified by model suspensions of beta-ferroxy-hydroxide and red blood cells (RBC) suspensions. The pressure changes, realized by a pump (micropipette), connected to a manometer were established and the corresponding shear rates in the microfluidic device were determined. Data about the blood microrheological properties like RBC aggregation and deformability, leukocyte adhesion from a group of healthy volunteers and from patients with type 2 diabetes mellitus (T2DM) were obtained. CONCLUSIONS The developed device and experimental system is a promising tool for the study of blood microrheology.
Collapse
Affiliation(s)
- Nadia Antonova
- Department of Biomechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Khristo Khristov
- Department of Medicine and Biology, Yaroslavl State Pedagogical University, Yaroslavl, Russia
| | - Anika Alexandrova
- Department of Biomechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexei Muravyov
- Department of Interfaces and Colloids, Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
9
|
Kang YJ. Contributions of Red Blood Cell Sedimentation in a Driving Syringe to Blood Flow in Capillary Channels. MICROMACHINES 2022; 13:mi13060909. [PMID: 35744523 PMCID: PMC9229591 DOI: 10.3390/mi13060909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022]
Abstract
The erythrocyte sedimentation rate (ESR), which has been commonly used to detect physiological and pathological diseases in clinical settings, has been quantified using an interface in a vertical tube. However, previous methods do not provide biophysical information on blood during the ESR test. Therefore, it is necessary to quantify the individual contributions in terms of viscosity and pressure. In this study, to quantify RBC sedimentation, the image intensity (Ib) and interface (β) were obtained by analyzing the blood flow in the microfluidic channels. Based on threshold image intensity, the corresponding interfaces of RBCs (Ib > 0.15) and diluent (Ib < 0.15) were employed to obtain the viscosities (µb, µ0) and junction pressures (Pb, P0). Two coefficients (CH1, CH2) obtained from the empirical formulas (µb = µ0 [1 + CH1], Pb = P0 [1 + CH2]) were calculated to quantify RBC sedimentation. The present method was then adopted to detect differences in RBC sedimentation for various suspended blood samples (healthy RBCs suspended in dextran solutions or plasma). Based on the experimental results, four parameters (µ0, P0, CH1, and CH2) are considered to be effective for quantifying the contributions of the hematocrit and diluent. Two coefficients exhibited more consistent trends than the conventional ESR method. In conclusion, the proposed method can effectively detect RBC sedimentation.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
10
|
Quantitative Monitoring of Dynamic Blood Flows Using Coflowing Laminar Streams in a Sensorless Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Determination of blood viscosity requires consistent measurement of blood flow rates, which leads to measurement errors and presents several issues when there are continuous changes in hematocrit changes. Instead of blood viscosity, a coflowing channel as a pressure sensor is adopted to quantify the dynamic flow of blood. Information on blood (i.e., hematocrit, flow rate, and viscosity) is not provided in advance. Using a discrete circuit model for the coflowing streams, the analytical expressions for four properties (i.e., pressure, shear stress, and two types of work) are then derived to quantify the flow of the test fluid. The analytical expressions are validated through numerical simulations. To demonstrate the method, the four properties are obtained using the present method by varying the flow patterns (i.e., constant flow rate or sinusoidal flow rate) as well as test fluids (i.e., glycerin solutions and blood). Thereafter, the present method is applied to quantify the dynamic flows of RBC aggregation-enhanced blood with a peristaltic pump, where any information regarding the blood is not specific. The experimental results indicate that the present method can quantify dynamic blood flow consistently, where hematocrit changes continuously over time.
Collapse
|
11
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
12
|
Boonya-ananta T, Rodriguez AJ, Ajmal A, Du Le VN, Hansen AK, Hutcheson JD, Ramella-Roman JC. Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI). Sci Rep 2021; 11:2570. [PMID: 33510428 PMCID: PMC7843978 DOI: 10.1038/s41598-021-82124-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of death in the United States and obesity significantly increases the risk of cardiovascular disease. The measurement of blood pressure (BP) is critical in monitoring and managing cardiovascular disease hence new wearable devices are being developed to make BP more accessible to physicians and patients. Several wearables utilize photoplethysmography from the wrist vasculature to derive BP assessment although many of these devices are still at the experimental stage. With the ultimate goal of supporting instrument development, we have developed a model of the photoplethysmographic waveform derived from the radial artery at the volar surface of the wrist. To do so we have utilized the relation between vessel biomechanics through Finite Element Method and Monte Carlo light transport model. The model shows similar features to that seen in PPG waveform captured using an off the shelf device. We observe the influence of body mass index on the PPG signal. A degradation the PPG signal of up to 40% in AC to DC signal ratio was thus observed.
Collapse
Affiliation(s)
- Tananant Boonya-ananta
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Andres J. Rodriguez
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Ajmal Ajmal
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Vinh Nguyen Du Le
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Anders K. Hansen
- grid.5170.30000 0001 2181 8870Department of Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Joshua D. Hutcheson
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Jessica C. Ramella-Roman
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA ,grid.65456.340000 0001 2110 1845Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199 USA
| |
Collapse
|
13
|
Kang YJ. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings. Physiol Meas 2020; 41:025009. [PMID: 32000147 DOI: 10.1088/1361-6579/ab71f3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The individual effects of plasma and red blood cells (RBCs) on the biophysical properties of blood can be monitored by measuring the erythrocyte sedimentation rate (ESR) and RBC deformability simultaneously. However, the previous methods require bulky and expensive facilities (i.e. microscope, high-speed camera, and syringe pump) to deliver blood or capture blood flows. APPROACH To resolve these issues, a simple method for sequential measurement of the ESR and RBC deformability is demonstrated by quantifying the cell-free volume (V CF ), cell-rich volume (V CR ), and blood volume (V B ) inside an air-compressed syringe (ACS). A microfluidic device consists of multiple micropillar channels, an inlet, and outlet. After the ACS is filled with air (V air = 0.4 ml) and a blood sample (V B = 0.6 ml, hematocrit = 30%) sequentially, the ACS is fitted into the inlet. The cavity inside the ACS is compressed to V comp = 0.4 ml after closing the outlet with a stopper. A smartphone camera is employed to capture variations in the V CF , V CR , and V B inside the ACS. The ESR index suggested in this study (ESR PM ) is obtained by dividing the V CF (t = t 1) with an elapse of t 1. By removing the stopper, ΔV B (ΔV B = V B [t = t 1] - V B ) is obtained and fitted as a two-term exponential model ([Formula: see text]. As a performance demonstration, the proposed method is employed to detect an ESR-enhanced blood sample, homogeneous hardened blood sample, and heterogeneous blood sample. MAIN RESULTS From the experimental results, it is found that the proposed method has the ability to detect various bloods by quantifying the ESR PM and two coefficients (a, b) simultaneously. SIGNIFICANCE In conclusion, the present method can be effectively used to measure the ESR and RBC deformability in resource-limited settings.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
14
|
Lu M, Rab MA, Shevkoplyas SS, Sheehan VA. Blood rheology biomarkers in sickle cell disease. Exp Biol Med (Maywood) 2020; 245:155-165. [PMID: 31948290 DOI: 10.1177/1535370219900494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approximately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD experience a wide range of clinical complications, including frequent pain crises, stroke, and early mortality, all originating from a single-point mutation in the β-globin subunit. The RBC changes resulting from the sickle mutation lead to a host of rheological abnormalities that diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysiology and mechanisms of SCD have been investigated for many years, therapies to treat the disease are limited. In addition to RBC transfusion, there are only two US Food and Drug Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU) and L-glutamine (Endari™). The only curative therapy currently available is allogeneic hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals with a matched related donor, comprising only 10–15% of the total SCD population. Potentially curative advanced gene therapy approaches for SCD are under investigation in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent clinical complications. Our mini-review highlights a set of key hemorheological biomarkers (and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative and palliative therapies for SCD, and functionally assess outcomes. Impact statement Severe impairment of blood rheology is the hallmark of SCD pathophysiology, and one of the key factors predisposing SCD patients to pain crises, organ damage, and early mortality. As novel therapies emerge to treat or cure SCD, it is crucial that these treatments are functionally evaluated for their effect on blood rheology. This review describes a comprehensive panel of rheological biomarkers, their clinical uses, and the technologies used to obtain them. The described technologies can produce highly sensitive measurements of the ability of current treatments to improve blood rheology of SCD patients. The goal of curative therapies should be to achieve blood rheology biomarkers measurements in the range of sickle cell trait individuals (HbAS). The use of the panel of rheological biomarkers proposed in this review could significantly accelerate the development, optimization, and clinical translation of novel therapies for SCD.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Minke Ae Rab
- Laboratory of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows. MICROMACHINES 2019; 10:mi10090577. [PMID: 31480325 PMCID: PMC6780160 DOI: 10.3390/mi10090577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of red blood cells (RBCs) varies substantially depending on changes of several factors such as hematocrit, membrane deformability, and plasma proteins. Among these factors, hematocrit has a strong influence on the aggregation of RBCs. Thus, while measuring RBCs aggregation, it is necessary to monitor hematocrit or, additionally, the effect of hematocrit (i.e., blood viscosity or pressure). In this study, the sequential measurement method of pressure and RBC aggregation is proposed by quantifying blood flow (i.e., velocity and image intensity) through a microfluidic device, in which an air-compressed syringe (ACS) is used to control the sample injection. The microfluidic device used is composed of two channels (pressure channel (PC), and blood channel (BC)), an inlet, and an outlet. A single ACS (i.e., air suction = 0.4 mL, blood suction = 0.4 mL, and air compression = 0.3 mL) is employed to supply blood into the microfluidic channel. At an initial time (t < 10 s), the pressure index (PI) is evaluated by analyzing the intensity of microscopy images of blood samples collected inside PC. During blood delivery with ACS, shear rates of blood flows vary continuously over time. After a certain amount of time has elapsed (t > 30 s), two RBC aggregation indices (i.e., SEAI: without information on shear rate, and erythrocyte aggregation index (EAI): with information on shear rate) are quantified by analyzing the image intensity and velocity field of blood flow in BC. According to experimental results, PI depends significantly on the characteristics of the blood samples (i.e., hematocrit or base solutions) and can be used effectively as an alternative to blood viscosity. In addition, SEAI and EAI also depend significantly on the degree of RBC aggregation. In conclusion, on the basis of three indices (two RBC aggregation indices and pressure index), the proposed method is capable of measuring RBCs aggregation consistently using a microfluidic device.
Collapse
|
16
|
Nehring A, Shendruk TN, de Haan HW. Morphology of depletant-induced erythrocyte aggregates. SOFT MATTER 2018; 14:8160-8171. [PMID: 30260361 DOI: 10.1039/c8sm01026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Collapse
Affiliation(s)
- Austin Nehring
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| | - Tyler N Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hendrick W de Haan
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| |
Collapse
|
17
|
Reinhart WH, Piety NZ, Shevkoplyas SS. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network. Microcirculation 2018; 24. [PMID: 28801994 DOI: 10.1111/micc.12396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Hct in narrow vessels is reduced due to concentration of fast-flowing RBCs in the center, and of slower flowing plasma along the wall of the vessel, which in combination with plasma skimming at bifurcations leads to the striking heterogeneity of local Hct in branching capillary networks known as the network Fåhraeus effect. We analyzed the influence of feeding Hct and perfusion pressure on the Fåhraeus effect in an AMVN. METHODS RBC suspensions in plasma with Hcts between 20% and 70% were perfused at pressures of 5-60 cm H2 O through the AMVN. A microscope and high-speed camera were used to measure RBC velocity and Hct in microchannels of height of 5 μm and widths of 5-19 μm. RESULTS Channel Hcts were reduced compared with Hctfeeding in 5 and 7 μm microchannels, but not in larger microchannels. The magnitude of Hct reduction increased with decreasing Hctfeeding and decreasing ΔP (flow velocity), showing an about sevenfold higher effect for 40% Hctfeeding and low pressure/flow velocity than for 60% Hctfeeding and high pressure/flow velocity. CONCLUSIONS The magnitude of the network Fåhraeus effect in an AMVN is inversely related to Hctfeeding and ΔP.
Collapse
Affiliation(s)
| | - Nathaniel Z Piety
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Murfee WL, Peirce SM. Microfluidics Technologies and Approaches for Studying the Microcirculation. Microcirculation 2018; 24. [PMID: 28470950 DOI: 10.1111/micc.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
A challenge for basic and applied microvascular research is the lack of ex vivo experimental platforms that mimic the structural and functional complexity that is inherent to the microcirculation in living organisms. This Special Topic Issue highlights the emergence of microfluidic-based approaches as tools for recapitulating physiologically relevant network architectures and hemodynamics to study biochemical and biomechanical mechanisms of microvascular function and adaptation. This collection of review and original research articles showcases the value of microfluidics in bridging the gap between in vivo and in vitro model systems by demonstrating the utility of this technology for investigating microvascular dynamics spanning angiogenesis to blood cell rheology and for preclinical evaluation of therapeutic strategies that target the microcirculation.
Collapse
Affiliation(s)
- Walter L Murfee
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Piety NZ, Reinhart WH, Stutz J, Shevkoplyas SS. Optimal hematocrit in an artificial microvascular network. Transfusion 2017; 57:2257-2266. [PMID: 28681482 DOI: 10.1111/trf.14213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Higher hematocrit increases the oxygen-carrying capacity of blood but also increases blood viscosity, thus decreasing blood flow through the microvasculature and reducing the oxygen delivery to tissues. Therefore, an optimal value of hematocrit that maximizes tissue oxygenation must exist. STUDY DESIGN AND METHODS We used viscometry and an artificial microvascular network device to determine the optimal hematocrit in vitro. Suspensions of fresh red blood cells (RBCs) in plasma, normal saline, or a protein-containing buffer and suspensions of stored red blood cells (at Week 6 of standard hypothermic storage) in plasma with hematocrits ranging from 10 to 80% were evaluated. RESULTS For viscometry, optimal hematocrits were 10, 25.2, 31.9, 37.1, and 37.5% for fresh RBCs in plasma at shear rates of 3.2 or less, 11.0, 27.7, 69.5, and 128.5 inverse seconds. For the artificial microvascular network, optimal hematocrits were 51.1, 55.6, 59.2, 60.9, 62.3, and 64.6% for fresh RBCs in plasma and 46.4, 48.1, 54.8, 61.4, 65.7, and 66.5% for stored RBCs in plasma at pressures of 2.5, 5, 10, 20, 40, and 60 cm H2 O. CONCLUSION Although exact optimal hematocrit values may depend on specific microvascular architecture, our results suggest that the optimal hematocrit for oxygen delivery in the microvasculature depends on perfusion pressure. Therefore, anemia in chronic disorders may represent a beneficial physiological response to reduced perfusion pressure resulting from decreased heart function and/or vascular stenosis. Our results may help explain why a therapeutically increasing hematocrit in such conditions with RBC transfusion frequently leads to worse clinical outcomes.
Collapse
Affiliation(s)
- Nathaniel Z Piety
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas
| | | | - Julianne Stutz
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
20
|
Kaliviotis E, Sherwood JM, Balabani S. Partitioning of red blood cell aggregates in bifurcating microscale flows. Sci Rep 2017; 7:44563. [PMID: 28303921 PMCID: PMC5355999 DOI: 10.1038/srep44563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.
Collapse
Affiliation(s)
- E Kaliviotis
- Dept. of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Cyprus.,Dept. of Mechanical Engineering, University College London, UK
| | - J M Sherwood
- Dept. of Bioengineering, Imperial College London, UK
| | - S Balabani
- Dept. of Mechanical Engineering, University College London, UK
| |
Collapse
|