1
|
Meng X, Du H, Li D, Guo Y, Luo P, Pan L, Kan R, Yu P, Xiang Y, Mao B, He Y, Wang S, Li W, Yang Y, Yu X. Risk Factors, Pathological Changes, and Potential Treatment of Diabetes-Associated Cognitive Dysfunction. J Diabetes 2025; 17:e70089. [PMID: 40296350 PMCID: PMC12037708 DOI: 10.1111/1753-0407.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Diabetes is a prevalent public health issue worldwide, and the cognitive dysfunction and subsequent dementia caused by it seriously affect the quality of life of patients. METHODS Recent studies were reviewed to provide a comprehensive summary of the risk factors, pathogenesis, pathological changes and potential drug treatments for diabetes-related cognitive dysfunction (DACD). RESULTS Several risk factors contribute to DACD, including hyperglycemia, hypoglycemia, blood sugar fluctuations, hyperinsulinemia, aging, and others. Among them, modifiable risk factors for DACD include blood glucose control, physical activity, diet, smoking, and hypertension management, while non-modifiable risk factors include age, genetic predisposition, sex, and duration of diabetes. At the present, the pathogenesis of DACD mainly includes insulin resistance, neuroinflammation, vascular disorders, oxidative stress, and neurotransmitter disorders. CONCLUSIONS In this review, we provide a comprehensive summary of the risk factors, pathogenesis, pathological changes and potential drug treatments for DACD, providing information from multiple perspectives for its prevention and management.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Haiyang Du
- Department of OrthopaedicsZhoukou Central HospitalZhoukouChina
| | - Danpei Li
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yaming Guo
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Peiqiong Luo
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Limeng Pan
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Ranran Kan
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Peng Yu
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of EndocrinologyThe Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuxi Xiang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Beibei Mao
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yi He
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Siyi Wang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Yang
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal MedicineTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Clinical Medical Research Center for Endocrinology and Metabolic DiseasesWuhanChina
- Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
2
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
3
|
Yu M, Jia Y, Yang D, Zhang R, Jiang Y, Zhang G, Qiao H, Han H, Shen R, Ning Z, Zhao X, Liu G, Wang Y. Association between haemoglobin A1c and cerebral microbleeds in community-based stroke-free individuals: A cross-sectional study. Diabetes Metab Res Rev 2022; 38:e3557. [PMID: 35686956 DOI: 10.1002/dmrr.3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
AIMS The association between haemoglobin A1c (HbA1c) and cerebral microbleeds (CMBs) remains unclear. We aimed to investigate the association between HbA1c and CMBs in community-based individuals without stroke or transient ischaemic attack (TIA) and whether the association differs between individuals with and without diabetes mellitus (DM). MATERIALS AND METHODS All individuals were recruited from a community in Beijing, China, from January 2015 to September 2019. All individuals completed a questionnaire and underwent blood tests and brain magnetic resonance imaging. A susceptibility-weighted imaging sequence was acquired to detect CMBs, which were defined as small, round and low-signal lesions with <10 mm diameter. The association between HbA1c and CMBs was analysed using multivariable logistic regression adjusted for demographics, medical history and blood sample test results. Subgroup analyses stratified by history of DM were performed. RESULTS Of 544 recruited individuals, 119 (21.88%) had CMBs. HbA1c was independently associated with CMBs (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.03-2.22). In 87 individuals with DM, multivariable logistic analysis showed that HbA1c was significantly associated with CMBs (OR, 1.67; 95% CI, 1.04-2.69), whereas in individuals without DM, no significant association was observed between HbA1c and CMBs (OR, 1.07; 95% CI, 0.50-2.30). CONCLUSIONS HbA1c was associated with CMBs in individuals without stroke or TIA, particularly in individuals with DM, suggesting that the status of glycaemic control warrants attention for the prevention of CMBs. It would be beneficial to manage HbA1c specifically to control the risk of CMBs, especially in individuals with DM.
Collapse
Affiliation(s)
- Miaoxin Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Jia
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dandan Yang
- Department of Radiology, Beijing Geriatric Hospital, Beijing, China
| | - Runhua Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Guitao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Samoilova YG, Matveeva MV, Tonkih OS, Kudlay DA, Oleynik OA, Aremu SO, Kilina OY, Kanev AF, Gerget OM. Interhemispheric asymmetry of the brain in patients with type 1 diabetes mellitus and cognitive impairment. Front Endocrinol (Lausanne) 2022; 13:961254. [PMID: 36105393 PMCID: PMC9465454 DOI: 10.3389/fendo.2022.961254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
With an ageing of population and a splurging epidemic of diabetes mellitus (DM), the prevalence of complications associated with pathology of the central nervous system are expected to increase, which in the future may have serious consequences for public health. It is known that one of the main manifestations of brain damage in type 1 diabetes is cognitive impairment, which is possibly associated with the peculiarities of vascularization and interhemispheric asymmetry, which requires in-depth analysis using modern neuroimaging methods. The aim of the study is to assess the symmetry of structural, metabolic and neurovascularization changes in the brain in patients with type 1 diabetes and cognitive impairment. The study included 120 patients with type 1 diabetes aged 18 to 45 years suffering from cognitive impairment, and 30 people without cognitive decline and the control group (n=30) healthy people without diabetes. Neuropsychological testing included the Montreal Cognitive Dysfunction Assessment Scale (MoCA test). For neuroimaging methods, standard magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), contrast and non-contrast-enhanced perfusion were used. Statistical processing was carried out using the SPSS Statistic 2020 software. In patients with type 1 diabetes with cognitive impairment, as manifested by impaired memory and/or attention, perfusion imaging revealed the presence of brain asymmetry zones. Standard MRI allowed to demonstrate changes in the white, gray matter and hippocampus in the right hemisphere. The results obtained were refined taking into account the topical localization, so during the perfusion study, regions with asymmetric blood flow were identified - namely, the white matter of the frontal lobe and the gray matter in the occipital lobe. Spectroscopy of the brain revealed that it was in these areas of the brain that the most significant metabolic disorders were noted - in the form of significantly altered ratio of N-acetylaspartate (NAA)/choline (Cho) on the left, along with the asymmetry in phosphocreatine level (Cr 2) on the right. In conclusion, early preclinical predictive diagnostics with the use of modern neuroimaging methods allows for timely detection of impaired vascularization and brain metabolism in this group of patients, However, decreased perfusion in the region within the region of frontal lobe white matter and temporal lobe grey matter, and hippocampal cell metabolism by spectra should be highlighted among the parameters Cr right and NAA/Cho left.
Collapse
Affiliation(s)
| | | | - Olga Sergeevna Tonkih
- Department of Tomographic Research Methods, Siberian State Medical University, Tomsk, Russia
| | - Dmitry Anatolievich Kudlay
- Department of Pharmacology, Ivan Mikhailovich Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Stephen Olaide Aremu
- Department of Children Diseases, Siberian State Medical University, Tomsk, Russia
- *Correspondence: Stephen Olaide Aremu,
| | - Oksana Yurievna Kilina
- Department of Internal Medicine, Katanov Khakass State University, Abakan, Republic of Khakassia, Russia
| | - Alexander Federovich Kanev
- Department of Internal Medicine with a Course of Therapy of Pediatrics Faculty, Siberian State Medical University, Tomsk, Russia
| | - Olga Mihailovna Gerget
- Department of Information Technology of the Engineering School of Information Technology and Robotics, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
5
|
Hsu JL, Gu PS, Kang EYC, Lai CC, Lo FS. Retinal Thickness Associates with Cognition Dysfunction in Young Adult with Type 1 Diabetes in Taiwan. J Diabetes Res 2022; 2022:9082177. [PMID: 36200004 PMCID: PMC9529476 DOI: 10.1155/2022/9082177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several factors could affect the cognitive dysfunction in patients with type 1 diabetes (T1D). OBJECTIVES To report the characteristic of cognitive dysfunction in T1D and find its association with the retinal thickness. SUBJECTS We recruited one hundred and seven patients with T1D in our study. METHODS Detailed clinical and demographic factors and Cambridge Automated Neuropsychological Test Battery (CANTAB) were performed in all participants. The age at onset>5 years old and ≤5 years old groups was defined as old- and young-onset groups. The levels of the average values of 5-year glycated hemoglobin (HbA1c_5) before study were collected. Ophthalmic study and central retinal thickness (CRT) were performed. RESULTS The median age of T1D was 24.9 years old and 57 participants were women. The median age at onset was 7.4 years old, and mean disease duration was 17.2 years. After adjusting off multiple covariates by the regression analyses, the young-onset group had significantly a longer latency in sustained attention than old-onset group (P = 0.02). The HbA1c_5 showed a significantly negative association with the sustained attention (P = 0.03). The average values of CRT showed significantly negative correlations with the reaction time in sustained attention and visual searching (P = 0.04 and P < 0.01, respectively). CONCLUSIONS Our results suggest that age at onset and glycemic control had significant impacts on different cognitive domains in T1D. The CRT had a significant correlation with sustained attention, which could be a surrogate markers of brain structural changes in T1D.
Collapse
Affiliation(s)
- Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, New Taipei City, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital Linkou and Neuroscience Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Shin Gu
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Fu-Sung Lo
- Department of Pediatrics, Chang Gung Memorial Hospital Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
6
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Adeva-Andany MM, Castro-Quintela E, Fernández-Fernández C, Carneiro-Freire N, Vila-Altesor M. The role of collagen homeostasis in the pathogenesis of vascular disease associated to insulin resistance. Diabetes Metab Syndr 2019; 13:1877-1883. [PMID: 31235109 DOI: 10.1016/j.dsx.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain.
| | - Elvira Castro-Quintela
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | | | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| | - Matilde Vila-Altesor
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406, Ferrol, Spain
| |
Collapse
|
8
|
Emanuel AL, van Duinkerken E, Wattjes MP, Klein M, Barkhof F, Snoek FJ, Diamant M, Eringa EC, IJzerman RG, Serné EH. The presence of cerebral white matter lesions and lower skin microvascular perfusion predicts lower cognitive performance in type 1 diabetes patients with retinopathy but not in healthy controls-A longitudinal study. Microcirculation 2019; 26:e12530. [PMID: 30659710 PMCID: PMC6593465 DOI: 10.1111/micc.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Cognitive impairments in type 1 diabetes may result from hyperglycemia-associated cerebral microangiopathy. We aimed to identify cerebral microangiopathy and skin microvascular dysfunction-as a surrogate marker for generalized microvascular function-as predictors of cognitive performance over time. METHODS In this prospective cohort study, 25 type 1 diabetes patients with proliferative retinopathy and 25 matched healthy controls underwent neurocognitive testing at baseline and after follow-up (3.8 ± 0.8 years). At baseline, 1.5-T cerebral magnetic resonance imaging was used to detect WML and cerebral microbleeds. Skin capillary perfusion was assessed by means of capillary microscopy. RESULTS In type 1 diabetes patients, but not in healthy controls, the presence of WML (ß = -0.419; P = 0.037) as well as lower skin capillary perfusion (baseline: ß = 0.753; P < 0.001; peak hyperemia: ß = 0.743; P = 0.001; venous occlusion: ß = 0.675; P = 0.003; capillary recruitment: ß = 0.549; P = 0.022) at baseline was associated with lower cognitive performance over time, independent of age, sex, HbA1c, and severe hypoglycemia. The relationship between WML and lower cognitive performance was significantly reduced after adjusting for capillary perfusion. CONCLUSIONS These data fit the hypothesis that cerebral microangiopathy is a manifestation of generalized microvascular dysfunction, leading to lower cognitive performance.
Collapse
Affiliation(s)
- Anna L Emanuel
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - Eelco van Duinkerken
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
| | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Martin Klein
- Department of Medical Psychology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Frank J Snoek
- Department of Medical Psychology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michaela Diamant
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Richard G IJzerman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Erik H Serné
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|