1
|
Faber JE. Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling. J Cereb Blood Flow Metab 2025:271678X251322378. [PMID: 40072222 PMCID: PMC11904929 DOI: 10.1177/0271678x251322378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Collateral blood vessels are unique, naturally occurring endogenous bypass vessels that provide alternative pathways for oxygen delivery in obstructive arterial conditions and diseases. Surprisingly however, the capacity of the collateral circulation to provide protection varies greatly among individuals, resulting in a significant fraction having poor collateral circulation in their tissues. We recently reviewed evidence that the presence of naturally-occurring polymorphisms in genes that determine the number and diameter of collaterals that form during development (ie, genetic background), is a major contributor to this variation. The purpose of this review is to summarize current understanding of the other determinants of collateral blood flow, drawing on both animal and human studies. These include the level of smooth muscle tone in collaterals, hemodynamic forces, how collaterals form during development (collaterogenesis), de novo formation of additional new collaterals during adulthood, loss of collaterals with aging and cardiovascular risk factor presence (rarefaction), and collateral remodeling (structural lumen enlargement). We also review emerging evidence that collaterals not only provide protection in ischemic conditions but may also serve a physiological function in healthy individuals. Primary focus is on studies conducted in brain, however relevant findings in other tissues are also reviewed, as are questions for future investigation.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Li J, Sun N, Hu S, Zuo Z. Chronic high fat diet-induced cerebrovascular remodeling impairs recovery of blood flow after cerebral ischemia in mice. J Cereb Blood Flow Metab 2025:271678X251313723. [PMID: 39819094 PMCID: PMC11748376 DOI: 10.1177/0271678x251313723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra. Six-week-old C57BL/6J or matrix metalloprotease-9 knockout (MMP-9-/-) mice were on HFD or regular diet (RD) for 12 to 14 months before a 60-min left middle cerebral arterial occlusion (MCAO). Photoacoustic microscopy was performed at left cerebral frontal cortex. HFD increased cerebrovascular density and tortuosity in C57BL/6J mice but not in MMP-9-/- mice. Blood flow to the ischemic penumbra slowly recovered but did not reach the baseline 2 h after MCAO in RD-fed mice. Oxygen extraction fraction was increased to maintain cerebral metabolic rate of oxygen (CMRO2) throughout brain ischemia and reperfusion period. This blood flow recovery was worsened in HFD-fed mice, leading to decreased CMRO2. MMP-9-/- attenuated these HFD effects. HFD increased MMP-9 activity and interleukin 1β. Pyrrolidine dithiocarbamate, an anti-inflammatory agent, abolished the HFD effects. Interleukin 1β increased MMP-9 activity. In summary, HFD induces cerebrovascular remodeling, leading to worsened recovery of blood supply to the ischemic penumbra to contribute to poor outcome after brain ischemia. Neuroinflammation may activate MMP-9 in HFD-fed mice.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation. Sci Rep 2024; 14:8767. [PMID: 38627467 PMCID: PMC11021487 DOI: 10.1038/s41598-024-59296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Department of Medicine, Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, 46202, USA.
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania.
| | - James Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, 17837, USA
| | - Sean McMahon
- Department of Physics, Virginia Tech, Blacksburg, 24060, USA
| | - David Blauvelt
- Department of Anesthesia, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, 02115, USA
| | - Lucian G Gruionu
- Department of Mechanical Engineering, University of Craiova, 200585, Craiova, Romania
| | | | - Benjamin J Vakoc
- Department of Dermatology and Wellman Center of Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, 02114, USA
| | - Timothy P Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | - Lance L Munn
- Department of Radiation Oncology, Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA.
| |
Collapse
|
4
|
Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu LG, Lenco MO, Vakoc BJ, Padera TP, Munn LL. Experimental and Theoretical Model of Single Vessel Minimally Invasive Micro-Laser Ablation: Inducing Microvascular Network Remodeling and Blood Flow Redistribution Without Compromising Host Tissue Function. RESEARCH SQUARE 2023:rs.3.rs-3754775. [PMID: 38196660 PMCID: PMC10775362 DOI: 10.21203/rs.3.rs-3754775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and Optical Coherence Tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1-3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5x and 3.3x, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results match the post-ablation microvascular remodeling patterns.
Collapse
Affiliation(s)
- Gabriel Gruionu
- Indiana University School of Medicine, Krannert Cardiovascular Research Center, Department of Medicine, Indianapolis, 46202, USA
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | - James Baish
- Bucknell University, Department of Biomedical Engineering, Lewisburg, 17837, USA
| | - Sean McMahon
- Virginia Tech, Department of Physics, Blacksburg, 24060, USA
| | - David Blauvelt
- Boston Children’s Hospital, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, 02115, USA
| | - Lucian G. Gruionu
- University of Craiova, Department of Mechanical Engineering, Craiova, 200585, Romania
| | | | - Benjamin J. Vakoc
- Harvard Medical School and Massachusetts General Hospital, Department of Dermatology and Wellman Center of Photomedicine, Boston, 02114, USA
| | - Timothy P. Padera
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| | - Lance L. Munn
- Massachusetts General Hospital and Harvard Medical School, Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Boston, 02114, USA
| |
Collapse
|
5
|
Wang Y, Sun N, Milne I, Cao R, Liu Q, Li Z, Guan Y, Yan Z, Hu S. Effects of Acute and Endurance Exercise on Cerebrovascular Function and Oxygen Metabolism: A Photoacoustic Microscopy Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1651-1660. [PMID: 37966924 PMCID: PMC10754349 DOI: 10.1109/tuffc.2023.3331697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Regular exercise improves the cerebrovascular function and has shown considerable therapeutic effects on a wide variety of brain diseases. However, the influence of exercise on different aspects of the cerebrovascular function remains to be comprehensively examined. In this study, we combined awake-brain photoacoustic microscopy (PAM) and a motorized treadmill to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and cerebral oxygen metabolism under both physiological and pathological conditions. Acute exercise stimulation in nondiabetic mice resulted in robust vasodilation, increased cerebral blood flow (CBF), reduced oxygen extraction fraction (OEF), and unchanged cerebral metabolic rate of oxygen (CMRO2)-demonstrating the utility of this experimental setting to evaluate the cerebrovascular reactivity. Also, endurance exercise training for six weeks in diabetic mice reversed the diabetes-induced increases in the resting-state CBF and CMRO2 and maintained a stable OEF and CMRO2 under the acute exercise stimulation-shedding new light on how exercise protects the brain from diabetes-induced small vessel disease. In summary, we established an experimental approach to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and tissue oxygen metabolism at the microscopic level and applied it to study the therapeutic benefits of endurance exercise training in diabetic mice.
Collapse
|
6
|
Bhargava A, Popel AS, Pathak AP. Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas. Microvasc Res 2023; 149:104555. [PMID: 37257688 PMCID: PMC10526652 DOI: 10.1016/j.mvr.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Vascular remodeling at the invasive tumor front (ITF) plays a critical role in progression and metastasis of triple negative breast cancer (TNBC). Therefore, there is a crucial need to characterize the vascular phenotype (i.e. changes in the structure and function of vasculature) of the ITF and tumor core (TC) in TNBC. This requires high-resolution, 3D structural and functional microvascular data that spans the ITF and TC (i.e. ∼4-5 mm from the tumor's edge). Since such data are often challenging to obtain with most conventional imaging approaches, we employed a unique "3D whole-tumor angiogenesis atlas" derived from orthotopic xenografts to characterize the vascular phenotype of the ITF and TC in TNBC. METHODS First, high-resolution (8 μm) computed tomography (CT) images of "whole-tumor" microvasculature were acquired from eight orthotopic TNBC xenografts, of which three tumors were excised at post-inoculation day 21 (i.e. early-stage) and five tumors were excised at post-inoculation day 35 (i.e. advanced-stage). These 3D morphological CT data were combined with soft tissue contrast from MRI as well as functional data generated in silico using image-based hemodynamic modeling to generate a multi-layered "angiogenesis atlas". Employing this atlas, blood vessels were first spatially stratified within the ITF (i.e. ≤1 mm from the tumor's edge) and TC (i.e. >1 mm from the tumor's edge) of each tumor xenograft. Then, a novel method was developed to visualize and characterize microvascular remodeling and perfusion changes in terms of distance from the tumor's edge. RESULTS The angiogenesis atlas enabled the 3D visualization of changes in tumor vessel growth patterns, morphology and perfusion within the ITF and TC. Early and advanced stage tumors demonstrated significant differences in terms of their edge-to-center distributions for vascular surface area density, vascular length density, intervessel distance and simulated perfusion density (p ≪ 0.01). Elevated vascular length density, vascular surface area density and perfusion density along the circumference of the ITF was suggestive of a preferential spatial pattern of angiogenic growth in this tumor cohort. Finally, we demonstrated the feasibility of differentiating the vascular phenotypes of ITF and TC in these TNBC xenografts. CONCLUSIONS The combination of a 3D angiogenesis atlas and image-based hemodynamic modeling heralds a new approach for characterizing the role of vascular remodeling in cancer and other diseases.
Collapse
Affiliation(s)
- Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Electrical Engineering, Johns Hopkins University; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
7
|
Sun N, Bruce AC, Ning B, Cao R, Wang Y, Zhong F, Peirce SM, Hu S. Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing. BIOMEDICAL OPTICS EXPRESS 2022; 13:2695-2706. [PMID: 35774317 PMCID: PMC9203110 DOI: 10.1364/boe.456198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.
Collapse
Affiliation(s)
- Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Yiming Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Sathyanarayana SG, Wang Z, Sun N, Ning B, Hu S, Hossack JA. Recovery of Blood Flow From Undersampled Photoacoustic Microscopy Data Using Sparse Modeling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:103-120. [PMID: 34388091 DOI: 10.1109/tmi.2021.3104521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoacoustic microscopy (PAM) leverages the optical absorption contrast of blood hemoglobin for high-resolution, multi-parametric imaging of the microvasculature in vivo. However, to quantify the blood flow speed, dense spatial sampling is required to assess blood flow-induced loss of correlation of sequentially acquired A-line signals, resulting in increased laser pulse repetition rate and consequently optical fluence. To address this issue, we have developed a sparse modeling approach for blood flow quantification based on downsampled PAM data. Evaluation of its performance both in vitro and in vivo shows that this sparse modeling method can accurately recover the substantially downsampled data (up to 8 times) for correlation-based blood flow analysis, with a relative error of 12.7 ± 6.1 % across 10 datasets in vitro and 12.7 ± 12.1 % in vivo for data downsampled 8 times. Reconstruction with the proposed method is on par with recovery using compressive sensing, which exhibits an error of 12.0 ± 7.9 % in vitro and 33.86 ± 26.18 % in vivo for data downsampled 8 times. Both methods outperform bicubic interpolation, which shows an error of 15.95 ± 9.85 % in vitro and 110.7 ± 87.1 % in vivo for data downsampled 8 times.
Collapse
|
9
|
Sciortino VM, Tran A, Sun N, Cao R, Sun T, Sun YY, Yan P, Zhong F, Zhou Y, Kuan CY, Lee JM, Hu S. Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy. J Cereb Blood Flow Metab 2021; 41:3187-3199. [PMID: 34304622 PMCID: PMC8669277 DOI: 10.1177/0271678x211034096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.
Collapse
Affiliation(s)
- Vincent M Sciortino
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Angela Tran
- Department of Biology, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rui Cao
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Tao Sun
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Yo Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ping Yan
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yifeng Zhou
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Neuroscience, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Song Hu
- Department of Biomedical Engineering, 2358University of Virginia, University of Virginia, Charlottesville, VA, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Wang J, Fu Z, Wang M, Lu J, Yang H, Lu H. Knockdown of XIST Attenuates Cerebral Ischemia/Reperfusion Injury Through Regulation of miR-362/ROCK2 Axis. Neurochem Res 2021; 46:2167-2180. [PMID: 34037903 DOI: 10.1007/s11064-021-03354-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and underlying mechanism of lncRNA X-inactive specific transcript (XIST) in cerebral ischemia/reperfusion (I/R) injury. An oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells was applied to mimic cerebral I/R injury in vitro and middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed in mice to mimic cerebral I/R injury in vivo. Real-time PCR, fluorescence in situ hybridization (FISH) assay, and western blotting assay were carried out to detect the expression levels of XIST, miR-362, and Rho-related coiled-coil containing protein kinase 2 (ROCK2). The functional experiments were measured by CCK-8 assay, immumofluorescence assay, ELISA assay, TUNEL, and TTC staining. Results displayed that XIST was elevated in PC12 cells with OGD/R, as well as in the ischemic penumbra of mice with MCAO/R. In vitro, knockdown of XIST facilitated cell survival, inhibited apoptosis, and alleviated inflammation injury in OGDR PC12 cells. In vivo, inhibition of XIST remarkably reduced the neurological impairments, promoted neuron proliferation, and suppressed apoptosis in MCAO mice. Mechanistically, XIST acted as a competing endogenous RNA of miR-362 to regulate the downstream gene ROCK2. In conclusion, depletion of XIST attenuated I/R-induced neurological impairment and inflammatory response via the miR-362/ROCK2 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Jingtao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Zhenqiang Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jingjing Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Hecheng Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Zhang X, Zheng Y, Geng C, Guan J, Wang L, Zhang X, Cheng Y, Li J, Lu X. Isometric exercise promotes arteriogenesis in rats after myocardial infarction. J Biomed Res 2021; 35:436-447. [PMID: 34776455 PMCID: PMC8637657 DOI: 10.7555/jbr.35.20210062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Isometric exercise (IE) is a promising intervention of noninvasive revascularization in patients with acute myocardial infarction (AMI). This study aimed to investigate the impact and mechanisms of IE training on arteriogenesis in AMI. Male Sprague-Dawley rats were randomly assigned into the sham-operation group (SO), myocardial infarction (MI) group, and 13 IE subgroups treated according to training intensity, frequency, duration, or monocyte chemoattractant protein-1 (MCP-1), or/and fibroblast growth factor-2 (FGF-2) inhibitors for eight weeks. Our results demonstrated that the IE group achieved superior improvement compared with the MI group in terms of left ventricular ejection fraction (LVEF), myocardial infarction size (MIS), arterial density (AD), monocytes (MNCs), smooth muscle cells (SMCs), endothelial cells (ECs), relative collateral blood flow (RCBF), MCP-1, and FGF-2 at the endpoint. Positive correlations between MCP-1 and MNCs, MNCs and FGF-2, FGF-2 and SMCs, SMCs and AD, as well as AD and RCBF were observed. This study demonstrated that with MI of 100% load 20 times daily for eight weeks, the arteriogenesis was improved, which may be attributed to the recruitment of MNCs and SMCs in remote ischemic myocardium caused by increases in MCP-1 and FGF-2 expression.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Zheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Canru Geng
- Department of Rehabilitation Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Juntao Guan
- Department of Rehabilitation Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Lu Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiu Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yihui Cheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian'an Li
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
12
|
Wang Y, Li Y, Ma C, Zhou T, Lu C, Ding L, Li L. LncRNA XIST Promoted OGD-Induced Neuronal Injury Through Modulating/miR-455-3p/TIPARP Axis. Neurochem Res 2021; 46:1447-1456. [PMID: 33738662 DOI: 10.1007/s11064-021-03286-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the incidence of ischemic stroke has gradually increased, but its pathogenesis has not been fully elucidated. lncRNAs played an important role in the occurrence and regulation of disease, but the research on ischemic stroke is very limited. Therefore, the role of lncRNA in ischemic stroke needs further exploration. The mice model was built to obtain OGD-induced neuronal cells for the following experiments. The protein expression of TCDD inducible poly [ADP-ribose] polymerase (TIPARP), B-cell lymphoma-2 (Bcl-2) and Cleaved Caspase-3 (Cleaved-cas3) were detected with western blot. qRT-PCR was used to analyze expression of XIST, miR-455-3p and TIPARP. CCK-8 assay indicated the capacity of cell proliferation. Flow cytometry was applied to assess cell apoptosis rate. Moreover, dual-luciferase reporter assay and RIP assay were used to determine that the relationship among XIST, miR-455-3p and TIPARP. In this study, we found that oxygen-glucose deprivation (OGD) induced XIST expression, inhibited miR-455-3p expression and promoted TIPARP mRNA and protein expression in neurons. Furthermore, XIST could affect cell growth of OGD-induced neuronal cells. Further analysis showed that XIST could regulate TIPARP by binding to miR-455-3p, and overexpression of miR-455-3p or inhibition of TIPARP could reverse the effects of high XIST expression on OGD-induced neuronal cells. On the contrary, suppression of miR-455-3p or promotion of TIPARP could reverse the effects of low XIST expression on OGD-induced neuronal cells. XIST could affect cell proliferation and apoptosis through miR-455-3p/TIPARP axis in OGD-induced neuronal cells, providing a new regulatory network to understand the pathogenesis of hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Yunfei Li
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Chaoyang Ma
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Chi Lu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Ding
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Lei Li
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China.
| |
Collapse
|