1
|
Tóth S, Kaszás D, Sónyák J, Tőkés AM, Padányi R, Papp B, Nagy R, Vörös K, Csizmadia T, Tordai A, Enyedi Á. The calcium pump PMCA4b promotes epithelial cell polarization and lumen formation. Commun Biol 2025; 8:421. [PMID: 40075218 PMCID: PMC11904214 DOI: 10.1038/s42003-025-07814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Loss of epithelial cell polarity and tissue disorganization are hallmarks of carcinogenesis, in which Ca2+ signaling plays a significant role. Here we demonstrate that the plasma membrane Ca2+ pump PMCA4 (ATP2B4) is downregulated in luminal breast cancer, and this is associated with shorter relapse-free survival in patients with luminal A and B1 subtype tumors. Using the MCF-7 breast cancer cell model we show that PMCA4 silencing results in the loss of cell polarity while a forced increase in PMCA4b expression induces cell polarization and promotes lumen formation. We identify Arf6 as a regulator of PMCA4b endocytic recycling essential for PMCA4-mediated lumen formation. Silencing of the single pmca gene in Drosophila melanogaster larval salivary gland destroys lumen morphology suggesting a conserved role of PMCAs in lumen morphogenesis. Our findings point to a role of PMCA4 in controlling epithelial cell polarity, and in the maintenance of normal glandular tissue architecture.
Collapse
Affiliation(s)
- Sarolta Tóth
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary.
| | - Diána Kaszás
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - János Sónyák
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Anna-Mária Tőkés
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR 1342, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France
| | - Réka Nagy
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Kinga Vörös
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Enyedi
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary.
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
2
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|