1
|
Gaballa A, Su TT, Helmann JD. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol 2021; 42:101935. [PMID: 33722570 PMCID: PMC8113031 DOI: 10.1016/j.redox.2021.101935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress. Bacillithiol is the major low molecular weight thiol in Bacillus subtilis. Oxidative stress leads to protein S-bacillithiolation. BrxC functions as a monothiol class bacilliredoxin. The Bdr bacillithiol disulfide reductase is also a bacilliredoxin.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tina Tianjiao Su
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Tsuji K, Yoon KS, Ogo S. Glyceraldehyde-3-phosphate dehydrogenase from Citrobacter sp. S-77 is post-translationally modified by CoA (protein CoAlation) under oxidative stress. FEBS Open Bio 2018; 9:53-73. [PMID: 30652074 PMCID: PMC6325607 DOI: 10.1002/2211-5463.12542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Protein CoAlation (S-thiolation by coenzyme A) has recently emerged as an alternative redox-regulated post-translational modification by which protein thiols are covalently modified with coenzyme A (CoA). However, little is known about the role and mechanism of this post-translational modification. In the present study, we investigated CoAlation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from a facultative anaerobic Gram-negative bacterium Citrobacter sp. S-77 (Cb GAPDH). GAPDH is a key glycolytic enzyme whose activity relies on the thiol-based redox-regulated post-translational modifications of active-site cysteine. LC-MS/MS analysis revealed that CoAlation of Cb GAPDH occurred in vivo under sodium hypochlorite (NaOCl) stress. The purified Cb GAPDH was highly sensitive to overoxidation by H2O2 and NaOCl, which resulted in irreversible enzyme inactivation. By contrast, treatment with coenzyme A disulphide (CoASSCoA) or H2O2/NaOCl in the presence of CoA led to CoAlation and inactivation of the enzyme; activity could be recovered after incubation with dithiothreitol, glutathione and CoA. CoAlation of the enzyme in vitro was confirmed by mass spectrometry. The presence of a substrate, glyceraldehyde-3-phosphate, fully protected Cb GAPDH from inactivation by CoAlation, suggesting that the inactivation is due to the formation of mixed disulphides between CoA and the active-site cysteine Cys149. A molecular docking study also supported the formation of mixed disulphide without steric constraints. These observations suggest that CoAlation is an alternative mechanism to protect the redox-sensitive thiol (Cys149) of Cb GAPDH against irreversible oxidation, thereby regulating enzyme activity under oxidative stress.
Collapse
Affiliation(s)
- Kohsei Tsuji
- Centre for Small Molecule Energy Kyushu University Fukuoka Japan.,Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University Fukuoka Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University Fukuoka Japan
| | - Ki-Seok Yoon
- Centre for Small Molecule Energy Kyushu University Fukuoka Japan.,Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University Fukuoka Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University Fukuoka Japan
| | - Seiji Ogo
- Centre for Small Molecule Energy Kyushu University Fukuoka Japan.,Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University Fukuoka Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) Kyushu University Fukuoka Japan
| |
Collapse
|
4
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
5
|
Rosado LA, Wahni K, Degiacomi G, Pedre B, Young D, de la Rubia AG, Boldrin F, Martens E, Marcos-Pascual L, Sancho-Vaello E, Albesa-Jové D, Provvedi R, Martin C, Makarov V, Versées W, Verniest G, Guerin ME, Mateos LM, Manganelli R, Messens J. The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of Mycobacterium tuberculosis. J Biol Chem 2017; 292:13097-13110. [PMID: 28620052 DOI: 10.1074/jbc.m117.797837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/12/2017] [Indexed: 12/19/2022] Open
Abstract
The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H2O2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S-mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms.
Collapse
Affiliation(s)
- Leonardo Astolfi Rosado
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Khadija Wahni
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | | | - Brandán Pedre
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - David Young
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Alfonso G de la Rubia
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Edo Martens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Laura Marcos-Pascual
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | - Enea Sancho-Vaello
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain
| | - David Albesa-Jové
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | | | - Charlotte Martin
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Vadim Makarov
- the A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Wim Versées
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Guido Verniest
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Marcelo E Guerin
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | - Luis M Mateos
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Joris Messens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium, .,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| |
Collapse
|
6
|
Lin JCY, Chiang BY, Chou CC, Chen TC, Chen YJ, Chen YJ, Lin CH. Glutathionylspermidine in the modification of protein SH groups: the enzymology and its application to study protein glutathionylation. Molecules 2015; 20:1452-74. [PMID: 25599150 PMCID: PMC6272389 DOI: 10.3390/molecules20011452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022] Open
Abstract
Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine. In this review we discuss some of the mechanistic aspects of glutathionylspermidine in prokaryotes and extend its potential use to eukaryotes in proteomics and biochemical applications through an example with tissue transglutaminase and its S-glutathionylation.
Collapse
Affiliation(s)
- Jason Ching-Yao Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Bing-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Tzu-Chieh Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| |
Collapse
|
7
|
Abstract
ABSTRACT
During infection,
Mycobacterium tuberculosis
is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of
M. tuberculosis
to evade the host immune response and cause disease is largely owing to the capacity of the mycobacterium to sense changes in its environment, such as host-generated gases, carbon sources, and pathological conditions, and alter its metabolism and redox balance accordingly for survival. In this article we discuss the redox sensors that are, to date, known to be present in
M. tuberculosis
, such as the Dos dormancy regulon, WhiB family, anti-σ factors, and MosR, in addition to the strategies present in the bacillus to neutralize free radicals, such as superoxide dismutases, catalase-peroxidase, thioredoxins, and methionine sulfoxide reductases, among others.
M. tuberculosis
is peculiar in that it appears to have a hierarchy of redox buffers, namely, mycothiol and ergothioneine. We discuss the current knowledge of their biosynthesis, function, and regulation. Ergothioneine is still an enigma, although it appears to have distinct and overlapping functions with mycothiol, which enable it to protect against a wide range of toxic metabolites and free radicals generated by the host. Developing approaches to quantify the intracellular redox status of the mycobacterium will enable us to determine how the redox balance is altered in response to signals and environments that mimic those encountered in the host.
Collapse
|