1
|
Bury-Moné S, Thibessard A, Lioy VS, Leblond P. Dynamics of the Streptomyces chromosome: chance and necessity. Trends Genet 2023; 39:873-887. [PMID: 37679290 DOI: 10.1016/j.tig.2023.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. Remarkably, these bacteria possess a large linear chromosome that is genetically compartmentalized: core genes are grouped in the central part, while the ends are populated by poorly conserved genes including antibiotic biosynthetic gene clusters. The genome is highly unstable and exhibits distinct evolutionary rates along the chromosome. Recent chromosome conformation capture (3C) and comparative genomics studies have shed new light on the interplay between genome dynamics in space and time. Here, we review insights that illustrate how the balance between chance (random genome variations) and necessity (structural and functional constraints) may have led to the emergence of spatial structuring of the Streptomyces chromosome.
Collapse
Affiliation(s)
- Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | | | - Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| |
Collapse
|
2
|
Extremophile Metal Resistance: Plasmid-Encoded Functions in Streptomyces mirabilis. Appl Environ Microbiol 2022; 88:e0008522. [PMID: 35604229 PMCID: PMC9195940 DOI: 10.1128/aem.00085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The extreme metal tolerance of up to 130 mM NiSO4 in Streptomyces mirabilis P16B-1 was investigated. Genome sequencing revealed the presence of a large linear plasmid, pI. To identify plasmid-encoded determinants of metal resistance, a newly established transformation system was used to characterize the predicted plasmid-encoded loci nreB, hoxN, and copYZ. Reintroduction into the plasmid-cured S. mirabilis ΔpI confirmed that the predicted metal transporter gene nreB constitutes a nickel resistance factor, which was further supported by its heterologous expression in Escherichia coli. In contrast, the predicted nickel exporter gene hoxN decreased nickel tolerance, while copper tolerance was enhanced. The predicted copper-dependent transcriptional regulator gene copY did not induce tolerance toward either metal. Since genes for transfer were identified on the plasmid, its conjugational transfer to the metal-sensitive Streptomyces lividans TK24 was checked. This resulted in acquired tolerance toward 30 mM nickel and additionally increased the tolerance toward copper and cobalt, while oxidative stress tolerance remained unchanged. Intracellular nickel concentrations decreased in the transconjugant strain. The high extracellular nickel concentrations allowed for biomineralization. Plasmid transfer could also be confirmed into the co-occurring actinomycete Kribbella spp. in soil microcosms. IMPORTANCE Living in extremely metal-rich environments requires specific adaptations, and often, specific metal tolerance genes are encoded on a transferable plasmid. Here, Streptomyces mirabilis P16B-1, isolated from a former mining area and able to grow with up to 130 mM NiSO4, was investigated. The bacterial chromosome, as well as a giant plasmid, was sequenced. The plasmid-borne gene nreB was confirmed to confer metal resistance. A newly established transformation system allowed us to construct a plasmid-cured S. mirabilis as well as an nreB-rescued strain in addition to confirming nreB encoding nickel resistance if heterologously expressed in E. coli. The potential of intra- and interspecific plasmid transfer, together with the presence of metal resistance factors on that plasmid, underlines the importance of plasmids for transfer of resistance factors within a bacterial soil community.
Collapse
|
3
|
Misaki Y, Nindita Y, Fujita K, Fauzi AA, Arakawa K. Overexpression of SRO_3163, a homolog of Streptomyces antibiotic regulatory protein, induces the production of novel cyclohexene-containing enamide in Streptomyces rochei. Biosci Biotechnol Biochem 2022; 86:177-184. [PMID: 34849547 DOI: 10.1093/bbb/zbab206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are well characterized as transcriptional activators for secondary metabolites in Streptomyces species. Streptomyces rochei 7434AN4 harbors 15 SARP genes, among which 3 were located on a giant linear plasmid pSLA2-L and others were on the chromosome. Some SARP genes were cloned into an integrative thiostrepton-inducible vector pIJ8600, and their recombinants were cultivated. The recombinant of SARP gene, SRO_3163, accumulated a UV-active compound YM3163-A, which was not detected in the parent strain and other SARP recombinants. Its molecular formula was established to be C8H11NO. Extensive NMR analysis revealed that YM3163-A is a novel enamide, 2-(cyclohex-2-en-1-ylidene)acetamide, and its structure was confirmed by chemical synthesis including Horner-Wadsworth-Emmons reaction and ammonolysis.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yosi Nindita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kota Fujita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
4
|
Algora-Gallardo L, Schniete JK, Mark DR, Hunter IS, Herron PR. Bilateral symmetry of linear streptomycete chromosomes. Microb Genom 2021; 7. [PMID: 34779763 PMCID: PMC8743542 DOI: 10.1099/mgen.0.000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, we characterize an uncommon set of telomeres from Streptomyces rimosus ATCC 10970, the parental strain of a lineage of one of the earliest-discovered antibiotic producers. Following the closure of its genome sequence, we compared unusual telomeres from this organism with the other five classes of replicon ends found amongst streptomycetes. Closed replicons of streptomycete chromosomes were organized with respect to their phylogeny and physical orientation, which demonstrated that different telomeres were not associated with particular clades and are likely shared amongst different strains by plasmid-driven horizontal gene transfer. Furthermore, we identified a ~50 kb origin island with conserved synteny that is located at the core of all streptomycete chromosomes and forms an axis around which symmetrical chromosome inversions can take place. Despite this chromosomal bilateral symmetry, a bias in parS sites to the right of oriC is maintained across the family Streptomycetaceae and suggests that the formation of ParB/parS nucleoprotein complexes on the right replichore is a conserved feature in streptomycetes. Consequently, our studies reveal novel features of linear bacterial replicons that, through their manipulation, may lead to improvements in growth and productivity of this important industrial group of bacteria.
Collapse
Affiliation(s)
- Lis Algora-Gallardo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jana K Schniete
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.,Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Iain S Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Paul R Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
5
|
Gomez-Escribano JP, Algora Gallardo L, Bozhüyük KAJ, Kendrew SG, Huckle BD, Crowhurst NA, Bibb MJ, Collis AJ, Micklefield J, Herron PR, Wilkinson B. Genome editing reveals that pSCL4 is required for chromosome linearity in Streptomyces clavuligerus. Microb Genom 2021; 7:000669. [PMID: 34747689 PMCID: PMC8743545 DOI: 10.1099/mgen.0.000669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid's parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.
Collapse
Affiliation(s)
- Juan Pablo Gomez-Escribano
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Lis Algora Gallardo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kenan A. J. Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Present address: Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Steven G. Kendrew
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
- Engineered Biodesign Limited, Cambridge CB1 3SN, UK
| | - Benjamin D. Huckle
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Nicola A. Crowhurst
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Mervyn J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Andrew J. Collis
- Biotechnology and Environmental Shared Service, GlaxoSmithKline, Southdown View Way, Worthing BN14 8QH, UK
| | - Jason Micklefield
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Paul R. Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Gren T, Whitford CM, Mohite OS, Jørgensen TS, Kontou EE, Nielsen JB, Lee SY, Weber T. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Sci Rep 2021; 11:18301. [PMID: 34526549 PMCID: PMC8443760 DOI: 10.1038/s41598-021-97571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.
Collapse
Affiliation(s)
- Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Novakova R, Rückert C, Knirschova R, Feckova L, Busche T, Csolleiova D, Homerova D, Rezuchova B, Javorova R, Sevcikova B, Kalinowski J, Kormanec J. The linear plasmid pSA3239 is essential for the replication of the Streptomyces lavendulae subsp. lavendulae CCM 3239 chromosome. Res Microbiol 2021; 172:103870. [PMID: 34487842 DOI: 10.1016/j.resmic.2021.103870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
We previously reported the complete genome of Streptomyces lavendulae subsp. lavendulae CCM 3239, containing the linear chromosome and the large linear plasmid pSA3239. Although the chromosome exhibited replication features characteristic for the archetypal end-patching replication, it lacked the tap/tpg gene pair for two proteins essential for this process. However, this archetypal tpgSa-tapSa operon is present in pSA3239. Complete genomic sequence of the S. lavendulae Del-LP strain lacking this plasmid revealed the circularization of its chromosome with a large deletion of both arms. These results suggest an essential role of pSA3239-encoded TapSa/TpgSa in the end-patching replication of the chromosome.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Renata Knirschova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Ramijan K, Zhang Z, van Wezel GP, Claessen D. Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie van Leeuwenhoek 2020; 113:825-837. [PMID: 32060816 PMCID: PMC7188733 DOI: 10.1007/s10482-020-01393-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Filamentous Actinobacteria are multicellular bacteria with linear replicons. Kitasatospora viridifaciens DSM 40239 contains a linear 7.8 Mb chromosome and an autonomously replicating plasmid KVP1 of 1.7 Mb. Here we show that lysozyme-induced protoplast formation of the multinucleated mycelium of K. viridifaciens drives morphological diversity. Characterisation and sequencing of an individual revertant colony that had lost the ability to differentiate revealed that the strain had not only lost most of KVP1 but also carried deletions in the right arm of the chromosome. Strikingly, the deletion sites were preceded by insertion sequence elements, suggesting that the rearrangements may have been caused by replicative transposition and homologous recombination between both replicons. These data indicate that protoplast formation is a stressful process that can lead to profound genetic changes.
Collapse
Affiliation(s)
- Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Zheren Zhang
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
9
|
Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y, Muslimin R, Yang Y, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Ishikawa J, Kuroda M, Sekizuka T, Inada K, Kinashi H, Arakawa K. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 2019; 9:10973. [PMID: 31358803 PMCID: PMC6662830 DOI: 10.1038/s41598-019-47406-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics, lankacidin and lankamycin, and carries three linear plasmids, pSLA2-L (211 kb), -M (113 kb), and -S (18 kb), whose nucleotide sequences were previously reported. The complete nucleotide sequence of the S. rochei chromosome has now been determined using the long-read PacBio RS-II sequencing together with short-read Illumina Genome Analyzer IIx sequencing and Roche 454 pyrosequencing techniques. The assembled sequence revealed an 8,364,802-bp linear chromosome with a high G + C content of 71.7% and 7,568 protein-coding ORFs. Thus, the gross genome size of S. rochei 7434AN4 was confirmed to be 8,706,406 bp including the three linear plasmids. Consistent with our previous study, a tap-tpg gene pair, which is essential for the maintenance of a linear topology of Streptomyces genomes, was not found on the chromosome. Remarkably, the S. rochei chromosome contains seven ribosomal RNA (rrn) operons (16S-23S-5S), although Streptomyces species generally contain six rrn operons. Based on 2ndFind and antiSMASH platforms, the S. rochei chromosome harbors at least 35 secondary metabolite biosynthetic gene clusters, including those for the 28-membered polyene macrolide pentamycin and the azoxyalkene compound KA57-A.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Zhisheng Cao
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuya Misaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Rukman Muslimin
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yingjie Yang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Michihira Tagami
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Alexander Lezhava
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan. .,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
10
|
Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 2018; 8:5272. [PMID: 29588483 PMCID: PMC5869714 DOI: 10.1038/s41598-018-23622-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The linear chromosome of the bacterium Streptomyces exhibits a remarkable genetic organization with grossly a central conserved region flanked by variable chromosomal arms. The terminal diversity co-locates with an intense DNA plasticity including the occurrence of large deletions associated to circularization and chromosomal arm exchange. These observations prompted us to assess the role of double strand break (DSB) repair in chromosome plasticity following. For that purpose, DSBs were induced along the chromosome using the meganuclease I-SceI. DSB repair in the central region of the chromosome was mutagenic at the healing site but kept intact the whole genome structure. In contrast, DSB repair in the chromosomal arms was mostly associated to the loss of the targeted chromosomal arm and extensive deletions beyond the cleavage sites. While homologous recombination occurring between copies of DNA sequences accounted for the most part of the chromosome rescue events, Non Homologous End Joining was involved in mutagenic repair as well as in huge genome rearrangements (i.e. circularization). Further, NHEJ repair was concomitant with the integration of genetic material at the healing site. We postulate that DSB repair drives genome plasticity and evolution in Streptomyces and that NHEJ may foster horizontal transfer in the environment.
Collapse
|