1
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Mahaseth T, Kuzminov A. Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli. Nucleic Acids Res 2022; 50:11013-11027. [PMID: 36243965 PMCID: PMC9638926 DOI: 10.1093/nar/gkac865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli cells treated with a combination of cyanide (CN) and hydrogen peroxide (HP) succumb to catastrophic chromosome fragmentation (CCF), detectable in pulsed-field gels as >100 double-strand breaks per genome equivalent. Here we show that CN + HP-induced double-strand breaks are independent of replication and occur uniformly over the chromosome,—therefore we used CCF to probe the nucleoid structure by measuring DNA release from precipitated nucleoids. CCF releases surprisingly little chromosomal DNA from the nucleoid suggesting that: (i) the nucleoid is a single DNA-protein complex with only limited stretches of protein-free DNA and (ii) CN + HP-induced breaks happen within these unsecured DNA stretches, rather than at DNA attachments to the central scaffold. Mutants lacking individual nucleoid-associated proteins (NAPs) release more DNA during CCF, consistent with NAPs anchoring chromosome to the central scaffold (Dps also reduces the number of double-strand breaks directly). Finally, significantly more broken DNA is released once ATP production is restored, with about two-thirds of this ATP-dependent DNA release being due to transcription, suggesting that transcription complexes act as pulleys to move DNA loops. In addition to NAPs, recombinational repair of double-strand breaks also inhibits DNA release by CCF, contributing to a dynamic and complex nucleoid structure.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Khan SR, Kuzminov A. Thymine-starvation-induced chromosomal fragmentation is not required for thymineless death in Escherichia coli. Mol Microbiol 2022; 117:1138-1155. [PMID: 35324030 PMCID: PMC11574965 DOI: 10.1111/mmi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
Thymine or thymidine starvation induces robust chromosomal fragmentation in Escherichia coli thyA deoCABD mutants and is proposed to be the cause of thymineless death (TLD). However, fragmentation kinetics challenges the idea that fragmentation causes TLD, by peaking before the onset of TLD and disappearing by the time TLD accelerates. Quantity and kinetics of fragmentation also stay unchanged in hyper-TLD-exhibiting recBCD mutant, making its faster and deeper TLD independent of fragmentation as well. Elimination of fragmentation without affecting cellular metabolism did not abolish TLD in the thyA mutant, but reduced early TLD in the thyA recBCD mutant, suggesting replication-dependent, but undetectable by pulsed-field gel, double-strand breaks contributed to TLD. Chromosomal fragmentation, but not TLD, was eliminated in both the thyA and thyA recBCD mutants harboring deoCABD operon. The expression of a single gene, deoA, encoding thymidine phosphorylase, was sufficient to abolish fragmentation, suggesting thymidine-to-thymine interconversion during T-starvation being a key factor. Overall, this study reveals that chromosomal fragmentation, a direct consequence of T-starvation, is either dispensable or redundant for the overall TLD pathology, including hyper-TLD in the recBCD mutant. Replication forks, unlike chromosomal fragmentation, may provide a minor contribution to TLD, but only in the repair-deficient thyA deoCABD recBCD mutant.
Collapse
Affiliation(s)
- Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli. J Biol Chem 2022; 298:101825. [PMID: 35288189 PMCID: PMC9018393 DOI: 10.1016/j.jbc.2022.101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Immune cells kill invading microbes by producing reactive oxygen and nitrogen species, primarily hydrogen peroxide (H2O2) and nitric oxide (NO). We previously found that NO inhibits catalases in Escherichia coli, stabilizing H2O2 around treated cells and promoting catastrophic chromosome fragmentation via continuous Fenton reactions generating hydroxyl radicals. Indeed, H2O2-alone treatment kills catalase-deficient (katEG) mutants similar to H2O2+NO treatment. However, the Fenton reaction, in addition to H2O2, requires Fe(II), which H2O2 excess instantly converts into Fenton-inert Fe(III). For continuous Fenton when H2O2 is stable, a supply of reduced iron becomes necessary. We show here that this supply is ensured by Fe(II) recruitment from ferritins and Fe(III) reduction by flavin reductase. Our observations also concur with NO-mediated respiration inhibition that drives Fe(III) reduction. We modeled this NO-mediated inhibition via inactivation of ndh and nuo respiratory enzymes responsible for the step of NADH oxidation, which results in increased NADH pools driving flavin reduction. We found that, like the katEG mutant, the ndh nuo double mutant is similarly sensitive to H2O2-alone and H2O2+NO treatments. Moreover, the quadruple katEG ndh nuo mutant lacking both catalases and efficient respiration was rapidly killed by H2O2-alone, but this killing was delayed by NO, rather than potentiated by it. Taken together, we conclude that NO boosts the levels of both H2O2 and Fe(II) Fenton reactants, making continuous hydroxyl-radical production feasible and resulting in irreparable oxidative damage to the chromosome.
Collapse
|
6
|
Oxidative damage blocks thymineless death and trimethoprim poisoning in Escherichia coli. J Bacteriol 2021; 204:e0037021. [PMID: 34633866 DOI: 10.1128/jb.00370-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells that cannot synthesize one of the DNA precursors, dTTP, due to thyA mutation or metabolic poisoning, undergo thymineless death (TLD), - a chromosome-based phenomenon of unclear mechanisms. In E. coli, thymineless death is caused either by denying thyA mutants thymidine supplementation or by treating wild type cells with trimethoprim. Two recent reports promised a potential breakthrough in TLD understanding, suggesting significant oxidative damage during thymine starvation. Oxidative damage in vivo comes from Fenton's reaction, when hydrogen peroxide meets ferrous iron to produce hydroxyl radical. Therefore, TLD could kill via irreparable double-strand breaks behind replication forks, when starvation-caused single-strand DNA gaps are attacked by hydroxyl radicals. We tested the proposed Fenton-TLD connection, in both thyA mutants denied thymidine, as well as in trimethoprim-treated WT cells, under three conditions: 1) intracellular iron chelation; 2) mutational inactivation of hydrogen peroxide (HP) scavenging; 3) acute treatment with sublethal HP concentrations. We found that TLD kinetics are affected by neither iron chelation, nor HP stabilization in cultures, indicating no induction of oxidative damage during thymine starvation. Moreover, acute exogenous HP treatments completely block TLD, apparently by blocking cell division - which may be a novel TLD prerequisite. Separately, the acute trimethoprim sensitivity of the rffC and recBCD mutants demonstrates how bactericidal power of this antibiotic could be amplified by inhibiting the corresponding enzymes. Importance Mysterious thymineless death strikes cells that are starved for thymine and therefore replicating their chromosomal DNA without dTTP. After 67 years of experiments testing various obvious and not so obvious explanations, thymineless death is still without a mechanism. Recently, oxidative damage via in vivo Fenton's reaction was proposed as a critical contributor to the irreparable chromosome damage during thymine starvation. We have tested this idea by either blocking in vivo Fenton's reaction (expecting no thymineless death) or by amplifying oxidative damage (expecting hyper thymineless death). Instead, we found that blocking Fenton's reaction has no influence on thymineless death, while amplifying oxidative damage prevents thymineless death altogether. Thus, oxidative damage does not contribute to thymineless death, while the latter remains enigmatic.
Collapse
|
7
|
Agashe P, Kuzminov A. Catalase inhibition by nitric oxide potentiates hydrogen peroxide to trigger catastrophic chromosome fragmentation in Escherichia coli. Genetics 2021; 218:6214516. [PMID: 34027548 DOI: 10.1093/genetics/iyab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen peroxide (H2O2, HP) is a universal toxin that organisms deploy to kill competing or invading cells. Bactericidal action of H2O2 presents several questions. First, the lethal H2O2 concentrations in bacterial cultures are 1000x higher than, for example, those calculated for the phagosome. Second, H2O2-alone kills bacteria in cultures either by mode-one, via iron-mediated chromosomal damage, or by mode-two, via unknown targets, but the killing mode in phagosomes is unclear. Third, phagosomal H2O2 toxicity is enhanced by production of nitric oxide (NO), but in vitro studies disagree: some show NO synergy with H2O2 antimicrobial action, others instead report alleviation. To investigate this "NO paradox," we treated Escherichia coli with various concentrations of H2O2-alone or H2O2+NO, measuring survival and chromosome stability. We found that all NO concentrations make sublethal H2O2 treatments highly lethal, via triggering catastrophic chromosome fragmentation (mode-one killing). Yet, NO-alone is not lethal, potentiating H2O2 toxicity by blocking H2O2 scavenging in cultures. Catalases represent obvious targets of NO inhibition, and catalase-deficient mutants are indeed killed equally by H2O2-alone or H2O2+NO treatments, also showing similar levels of chromosome fragmentation. Interestingly, iron chelation blocks chromosome fragmentation in catalase-deficient mutants without blocking H2O2-alone lethality, indicating mode-two killing. In fact, mode-two killing of WT cells by much higher H2O2 concentrations is transiently alleviated by NO, reproducing the "NO paradox." We conclude that NO potentiates H2O2 toxicity by promoting mode-one killing (via catastrophic chromosome fragmentation) by otherwise static low H2O2 concentrations, while transiently suppressing mode-two killing by immediately lethal high H2O2 concentrations.
Collapse
Affiliation(s)
- Pooja Agashe
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Iron chelation increases the tolerance of Escherichia coli to hyper-replication stress. Sci Rep 2018; 8:10550. [PMID: 30002429 PMCID: PMC6043582 DOI: 10.1038/s41598-018-28841-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022] Open
Abstract
In Escherichia coli, an increase in the frequency of chromosome replication is lethal. In order to identify compounds that affect chromosome replication, we screened for molecules capable of restoring the viability of hyper-replicating cells. We made use of two E. coli strains that over-initiate DNA replication by keeping the DnaA initiator protein in its active ATP bound state. While viable under anaerobic growth or when grown on poor media, these strains become inviable when grown in rich media. Extracts from actinomycetes strains were screened, leading to the identification of deferoxamine (DFO) as the active compound in one of them. We show that DFO does not affect chromosomal replication initiation and suggest that it was identified due to its ability to chelate cellular iron. This limits the formation of reactive oxygen species, reduce oxidative DNA damage and promote processivity of DNA replication. We argue that the benzazepine derivate (±)-6-Chloro-PB hydrobromide acts in a similar manner.
Collapse
|
10
|
Jones LB, Ghosh P, Lee JH, Chou CN, Kunz DA. Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source. Microbiology (Reading) 2018; 164:956-968. [DOI: 10.1099/mic.0.000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lauren B. Jones
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Pallab Ghosh
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Jung-Hyun Lee
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chia-Ni Chou
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel A. Kunz
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
11
|
Khan SR, Kuzminov A. Degradation of RNA during lysis of Escherichia coli cells in agarose plugs breaks the chromosome. PLoS One 2017; 12:e0190177. [PMID: 29267353 PMCID: PMC5739488 DOI: 10.1371/journal.pone.0190177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
The nucleoid of Escherichia coli comprises DNA, nucleoid associated proteins (NAPs) and RNA, whose role is unclear. We found that lysing bacterial cells embedded in agarose plugs in the presence of RNases caused massive fragmentation of the chromosomal DNA. This RNase-induced chromosomal fragmentation (RiCF) was completely dependent on the presence of RNase around lysing cells, while the maximal chromosomal breakage required fast cell lysis. Cell lysis in plugs without RNAse made the chromosomal DNA resistant to subsequent RNAse treatment. RiCF was not influenced by changes in the DNA supercoiling, but was influenced by growth temperature or age of the culture. RiCF was partially dependent on H-NS, histone-like nucleoid structuring- and global transcription regulator protein. The hupAB deletion of heat-unstable nucleoid protein (HU) caused increase in spontaneous fragmentation that was further increased when combined with deletions in two non-coding RNAs, nc1 and nc5. RiCF was completely dependent upon endonuclease I, a periplasmic deoxyribonuclease that is normally found inhibited by cellular RNA. Unlike RiCF, the spontaneous fragmentation in hupAB nc1 nc5 quadruple mutant was resistant to deletion of endonuclease I. RiCF-like phenomenon was observed without addition of RNase to agarose plugs if EDTA was significantly reduced during cell lysis. Addition of RNase under this condition was synergistic, breaking chromosomes into pieces too small to be retained by the pulsed field gels. RNase-independent fragmentation was qualitatively and quantitatively comparable to RiCF and was partially mediated by endonuclease I.
Collapse
Affiliation(s)
- Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
12
|
Moore JM, Correa R, Rosenberg SM, Hastings PJ. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli. PLoS Genet 2017; 13:e1006733. [PMID: 28727736 PMCID: PMC5542668 DOI: 10.1371/journal.pgen.1006733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/03/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.
Collapse
Affiliation(s)
- Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
13
|
Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 773:274-281. [PMID: 28927535 DOI: 10.1016/j.mrrev.2016.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Hydrogen peroxide (H2O2) is unique among general toxins, because it is stable in abiotic environments at ambient temperature and neutral pH, yet rapidly kills any type of cells by producing highly-reactive hydroxyl radicals. This life-specific reactivity follows the distribution of soluble iron, Fe(II) (which combines with H2O2 to form the famous Fenton's reagent),Fe(II) is concentrated inside cells, but is virtually absent outside them. Because of the immediate danger of H2O2, all cells have powerful H2O2 scavengers, the equally famous catalases, which enable cells to survive thousand-fold higher concentrations of H2O2 and, in combination with adequate movement of H2O2 across membranes, make the killing H2O2 concentrations virtually impractical to generate in vivo. And yet, low concentrations of H2O2 are somehow used as an efficient biological weapon. Here we review several examples of how cells potentiate H2O2 toxicity with other chemicals. At first, these potentiators were thought to simply inhibit catalases, but recent findings with cyanide suggest that potentiators mostly promote the other side of Fenton's reaction, recruiting iron from cell depots into stable DNA-iron complexes that, in the presence of elevated H2O2, efficiently break duplex DNA, pulverizing the chromosome. This multifaceted potentiation of H2O2 toxicity results in robust and efficient killing.
Collapse
|
14
|
Mahaseth T, Kuzminov A. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation. DNA Repair (Amst) 2016; 41:42-53. [PMID: 27078578 PMCID: PMC4851570 DOI: 10.1016/j.dnarep.2016.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
Abstract
Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
15
|
Khan SR, Mahaseth T, Kouzminova EA, Cronan GE, Kuzminov A. Static and Dynamic Factors Limit Chromosomal Replication Complexity in Escherichia coli, Avoiding Dangers of Runaway Overreplication. Genetics 2016; 202:945-60. [PMID: 26801182 PMCID: PMC4788131 DOI: 10.1534/genetics.115.184697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
We define chromosomal replication complexity (CRC) as the ratio of the copy number of the most replicated regions to that of unreplicated regions on the same chromosome. Although a typical CRC of eukaryotic or bacterial chromosomes is 2, rapidly growing Escherichia coli cells induce an extra round of replication in their chromosomes (CRC = 4). There are also E. coli mutants with stable CRC∼6. We have investigated the limits and consequences of elevated CRC in E. coli and found three limits: the "natural" CRC limit of ∼8 (cells divide more slowly); the "functional" CRC limit of ∼22 (cells divide extremely slowly); and the "tolerance" CRC limit of ∼64 (cells stop dividing). While the natural limit is likely maintained by the eclipse system spacing replication initiations, the functional limit might reflect the capacity of the chromosome segregation system, rather than dedicated mechanisms, and the tolerance limit may result from titration of limiting replication factors. Whereas recombinational repair is beneficial for cells at the natural and functional CRC limits, we show that it becomes detrimental at the tolerance CRC limit, suggesting recombinational misrepair during the runaway overreplication and giving a rationale for avoidance of the latter.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
16
|
Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Rep 2015; 13:968-80. [PMID: 26565910 DOI: 10.1016/j.celrep.2015.09.059] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 01/16/2023] Open
Abstract
Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.
Collapse
Affiliation(s)
- Peter Belenky
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA.
| | - Jonathan D Ye
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Caroline B M Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Nadia R Cohen
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael A Lobritz
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Saloni Jain
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Eric G Schwarz
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, 36 Cummington Mall, Boston, MA 02215, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|