1
|
Antani JD, Shaji A, Gupta R, Lele PP. Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Annu Rev Chem Biomol Eng 2024; 15:51-62. [PMID: 38048436 PMCID: PMC11634455 DOI: 10.1146/annurev-chembioeng-100722-114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Helicobacter pylori infections are a major cause of peptic ulcers and gastric cancers. The development of robust inflammation in response to these flagellated, motile bacteria is correlated with poor prognosis. Chemotaxis plays a crucial role in H. pylori colonization, enabling the bacteria to swim toward favorable chemical environments. Unlike the model species of bacterial chemotaxis, Escherichia coli, H. pylori cells possess polar flagella. They run forward by rotating their flagella counterclockwise, whereas backward runs are achieved by rotating their flagella clockwise. We delve into the implications of certain features of the canonical model of chemotaxis on our understanding of biased migration in polarly flagellated bacteria such as H. pylori. In particular, we predict how the translational displacement of H. pylori cells during a backward run could give rise to chemotaxis errors within the canonical framework. Also, H. pylori lack key chemotaxis enzymes found in E. coli, without which sensitive detection of ligands with a wide dynamic range seems unlikely. Despite these problems, H. pylori exhibit robust ability to migrate toward urea-rich sources. We emphasize various unresolved questions regarding the biophysical mechanisms of chemotaxis in H. pylori, shedding light on potential directions for future research. Understanding the intricacies of biased migration in H. pylori could offer valuable insights into how pathogens breach various protective barriers in the human host.
Collapse
Affiliation(s)
- Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; , ,
- Current affiliation: Department of Ecology and Evolutionary Biology, Center for Phage Biology & Therapy, and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
| | - Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; , ,
| | - Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; , ,
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; , ,
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Liu X, Lertsethtakarn P, Mariscal VT, Yildiz F, Ottemann KM. Counterclockwise rotation of the flagellum promotes biofilm initiation in Helicobacter pylori. mBio 2024; 15:e0044024. [PMID: 38700325 PMCID: PMC11237671 DOI: 10.1128/mbio.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Vanessa T. Mariscal
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
3
|
Sagoo J, Abedrabbo S, Liu X, Ottemann KM. Helicobacter pylori cheV1 mutants recover semisolid agar migration due to loss of a previously uncharacterized Type IV filament membrane alignment complex homolog. J Bacteriol 2024; 206:e0040623. [PMID: 38446058 PMCID: PMC11025336 DOI: 10.1128/jb.00406-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.
Collapse
Affiliation(s)
- Jashwin Sagoo
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Samar Abedrabbo
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Liu X, Tachiyama S, Zhou X, Mathias RA, Bonny SQ, Khan MF, Xin Y, Roujeinikova A, Liu J, Ottemann KM. Bacterial flagella hijack type IV pili proteins to control motility. Proc Natl Acad Sci U S A 2024; 121:e2317452121. [PMID: 38236729 PMCID: PMC10823254 DOI: 10.1073/pnas.2317452121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Xiaotian Zhou
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Sharmin Q. Bonny
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohammad F. Khan
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| |
Collapse
|
5
|
Louis G, Cherry P, Michaux C, Rahuel-Clermont S, Dieu M, Tilquin F, Maertens L, Van Houdt R, Renard P, Perpete E, Matroule JY. A cytoplasmic chemoreceptor and reactive oxygen species mediate bacterial chemotaxis to copper. J Biol Chem 2023; 299:105207. [PMID: 37660909 PMCID: PMC10579534 DOI: 10.1016/j.jbc.2023.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated. Here, using inductively coupled plasma optical emission spectrometry on cell fractionates, we found that the cytoplasmic Cu ion content mirrors variations of the extracellular Cu ion concentration. ROS-sensitive fluorescent probe and biosensor allowed us to show that the increase of cytoplasmic Cu ion content triggers a dose-dependent oxidative stress, which can be abrogated by superoxide dismutase and catalase overexpression. The inhibition of ROS production in the cytoplasm not only improves bacterial growth but also impedes Cu chemotaxis, indicating that ROS derived from cytoplasmic Cu ions mediate the control of bacterial chemotaxis to Cu. We also identified the Cu chemoreceptor McpR, which binds Cu ions with low affinity, suggesting a labile interaction. In addition, we demonstrate that the cysteine 75 and histidine 99 within the McpR sensor domain are key residues in Cu chemotaxis and Cu coordination. Finally, we discovered that in vitro both Cu(I) and Cu(II) ions modulate McpR conformation in a distinct manner. Overall, our study provides mechanistic insights on a redox-based control of Cu chemotaxis, indicating that the cellular redox status can play a key role in bacterial chemotaxis.
Collapse
Affiliation(s)
- Gwennaëlle Louis
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Pauline Cherry
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, Namur Research Institute for Life Sciences (NARILIS) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | | | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, Namur, Belgium
| | - Françoise Tilquin
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laurens Maertens
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Patricia Renard
- MaSUN, Mass Spectrometry Facility, University of Namur, Namur, Belgium
| | - Eric Perpete
- Laboratoire de Chimie Physique des Biomolécules, Namur Research Institute for Life Sciences (NARILIS) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Jean-Yves Matroule
- Research Unit in Biology of Microorganisms (URBM), Department of Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
6
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
7
|
Sagoo J, Abedrabbo S, Liu X, Ottemann KM. Discovery of Type IV filament membrane alignment complex homologs in H. pylori that promote soft-agar migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.537399. [PMID: 37163056 PMCID: PMC10168365 DOI: 10.1101/2023.04.27.537399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The stomach pathogen Helicobacter pylori utilizes two scaffold proteins, CheW and CheV1, to build critical chemotaxis arrays. Chemotaxis helps bacteria establish and maintain infection. Mutants lacking either of these chemotaxis proteins have different soft agar phenotypes: deletion of cheW creates non-chemotactic strains, while deletion of cheV1 results in 50% loss of chemotaxis. In this work, we characterized the cheV1 deletion mutant phenotype in detail. cheV1 deletion mutants had poor soft-agar migration initially, but regained migration ability over time. This improved bacterial migration was stable, suggesting a genetic suppressor phenotype, termed Che+. Whole-genome sequencing analysis of four distinct cheV1 Che+ strains revealed single nucleotide polymorphisms (SNPs) in a common gene, HPG27_252 (HP0273). These SNPs were predicted to truncate the encoded protein. To confirm the role of HPG27_252 in the cheV1 phenotype, we created a targeted deletion of HPG27_252 and found that loss of HPG27_252 enhanced soft-agar migration. HPG27_252 and CheV1 appear to interact directly, based on bacterial two-hybrid analysis. HPG27_252 is predicted to encode a 179 amino acid, 21 kDa protein annotated as a hypothetical protein. Computational analysis revealed this protein to be a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori is not known to possess Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM, but does not possess other Type IV pili genes. Our data suggest the PilO homolog plays a role in regulating H. pylori chemotaxis and motility, suggesting new ideas about evolutionary steps for controlling migration through semi-solid media.
Collapse
|
8
|
Mo R, Ma W, Zhou W, Gao B. Polar localization of CheO under hypoxia promotes Campylobacter jejuni chemotactic behavior within host. PLoS Pathog 2022; 18:e1010953. [PMID: 36327346 PMCID: PMC9665402 DOI: 10.1371/journal.ppat.1010953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni is a food-borne zoonotic pathogen of worldwide concern and the leading cause of bacterial diarrheal disease. In contrast to other enteric pathogens, C. jejuni has strict growth and nutritional requirements but lacks many virulence factors that have evolved for pathogenesis or interactions with the host. It is unclear how this bacterium has adapted to an enteric lifestyle. Here, we discovered that the CheO protein (CJJ81176_1265) is required for C. jejuni colonization of mice gut through its role in chemotactic control of flagellar rotation in oxygen-limiting environments. CheO interacts with the chemotaxis signaling proteins CheA and CheZ, and also with the flagellar rotor components FliM and FliY. Under microaerobic conditions, CheO localizes at the cellular poles where the chemosensory array and flagellar machinery are located in C. jejuni and its polar localization depends on chemosensory array formation. Several chemoreceptors that mediate energy taxis coordinately determine the bipolar distribution of CheO. Suppressor screening for a ΔcheO mutant identified that a single residue variation in FliM can alleviate the phenotype caused by the absence of CheO, confirming its regulatory role in the flagellar rotor switch. CheO homologs are only found in species of the Campylobacterota phylum, mostly species of host-associated genera Campylobacter, Helicobacter and Wolinella. The CheO results provide insights into the complexity of chemotaxis signal transduction in C. jejuni and closely related species. Importantly, the recruitment of CheO into chemosensory array to promote chemotactic behavior under hypoxia represents a new adaptation strategy of C. jejuni to human and animal intestines. Bacteria use chemotaxis to navigate their flagellar motility towards or away from a variety of environmental stimuli. For many pathogens, chemotactic motility plays an important role in infection and disease. Understanding the mechanism of chemotaxis behavior in pathogens can help the development of therapeutic strategies by interfering with chemotactic signal transduction. In this study, we identified a novel chemotaxis protein CheO in Campylobacter jejuni, a leading cause of human gastroenteritis worldwide. We demonstrated that CheO is directly involved in chemotactic control of the flagellar motor switch, the reason that it is required for colonization of different animal models. We also provide evidences that CheO is responsive to environmental oxygen variation, with a more prominent role in energy taxis under low oxygen levels. Therefore, CheO presents a novel mechanism for C. jejuni adaptation to hypoxia conditions such as those existing in human and animal intestines. Targeting CheO and other chemotaxis regulators could reduce the survival of C. jejuni within hosts and in the food chain.
Collapse
Affiliation(s)
- Ran Mo
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Ma
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Tropical Marine Biological Research Station in Hainan, Sanya Institute of Oceanology, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya, China
- * E-mail:
| |
Collapse
|
9
|
The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. mBio 2021; 12:e0181921. [PMID: 34340539 PMCID: PMC8406319 DOI: 10.1128/mbio.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems.
Collapse
|
10
|
Antani JD, Sumali AX, Lele TP, Lele PP. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias in Helicobacter pylori. eLife 2021; 10:63936. [PMID: 33493107 PMCID: PMC7834020 DOI: 10.7554/elife.63936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The canonical chemotaxis network modulates the bias for a particular direction of rotation in the bacterial flagellar motor to help the cell migrate toward favorable chemical environments. How the chemotaxis network in Helicobacter pylori modulates flagellar functions is unknown, which limits our understanding of chemotaxis in this species. Here, we determined that H. pylori swim faster (slower) whenever their flagella rotate counterclockwise (clockwise) by analyzing their hydrodynamic interactions with bounding surfaces. This asymmetry in swimming helped quantify the rotational bias. Upon exposure to a chemo-attractant, the bias decreased and the cells tended to swim exclusively in the faster mode. In the absence of a key chemotaxis protein, CheY, the bias was zero. The relationship between the reversal frequency and the rotational bias was unimodal. Thus, H. pylori’s chemotaxis network appears to modulate the probability of clockwise rotation in otherwise counterclockwise-rotating flagella, similar to the canonical network.
Collapse
Affiliation(s)
- Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Anita X Sumali
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, College Station, TX 77840, United States.,Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, United States
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
11
|
Liu X, Liu Y, Johnson KS, Dong X, Xie Z. Protein Residues and a Novel Motif Involved in the Cellular Localization of CheZ in Azorhizobium caulinodans ORS571. Front Microbiol 2020; 11:585140. [PMID: 33365019 PMCID: PMC7750401 DOI: 10.3389/fmicb.2020.585140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis is essential for the competitiveness of motile bacteria in complex and harsh environments. The localization of chemotactic proteins in the cell is critical for coordinating a maximal response to chemotactic signals. One chemotaxis protein with a well-defined subcellular localization is the phosphatase CheZ. CheZ localizes to cell poles by binding with CheA in Escherichia coli and other enteric bacteria, or binding with a poorly understood protein called ChePep in epsilon-Proteobacteria. In alpha-Proteobacteria, CheZ lacks CheA-binding sites, and its cellular localization remains unknown. We therefore determined the localization of CheZ in the alpha-Proteobacteria Azorhizobium caulinodans ORS571. A. caulinodans CheZ, also termed as CheZAC, was found to be located to cell poles independently of CheA, and we suspect that either the N-terminal helix or the four-helix bundle of CheZAC is sufficient to locate to cell poles. We also found a novel motif, AXXFQ, which is adjacent to the phosphatase active motif DXXXQ, which effects the monopolar localization of CheZAC. This novel motif consisting of AXXFQ is conserved in CheZ and widely distributed among Proteobacteria. Finally, we found that the substitution of phosphatase active site affects the polar localization of CheZAC. In total, this work characterized the localization pattern of CheZ containing a novel motif, and we mapped the regions of CheZAC that are critical for its polar localization.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kevin Scot Johnson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| |
Collapse
|
12
|
Matilla MA, Martín-Mora D, Krell T. The use of isothermal titration calorimetry to unravel chemotactic signalling mechanisms. Environ Microbiol 2020; 22:3005-3019. [PMID: 32329116 DOI: 10.1111/1462-2920.15035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Chemotaxis is based on the action of chemosensory pathways and is typically initiated by the recognition of chemoeffectors at chemoreceptor ligand-binding domains (LBD). Chemosensory signalling is highly complex; aspect that is not only reflected in the intricate interaction between many signalling proteins but also in the fact that bacteria frequently possess multiple chemosensory pathways and often a large number of chemoreceptors, which are mostly of unknown function. We review here the usefulness of isothermal titration calorimetry (ITC) to study this complexity. ITC is the gold standard for studying binding processes due to its precision and sensitivity, as well as its capability to determine simultaneously the association equilibrium constant, enthalpy change and stoichiometry of binding. There is now evidence that members of all major LBD families can be produced as individual recombinant proteins that maintain their ligand-binding properties. High-throughput screening of these proteins using thermal shift assays offer interesting initial information on chemoreceptor ligands, providing the basis for microcalorimetric analyses and microbiological experimentation. ITC has permitted the identification and characterization of many chemoreceptors with novel specificities. This ITC-based approach can also be used to identify signal molecules that stimulate members of other families of sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
13
|
Cha G, Chen Z, Mo R, Lu G, Gao B. The novel regulators CheP and CheQ control the core chemotaxis operon cheVAW in Campylobacter jejuni. Mol Microbiol 2018; 111:145-158. [PMID: 30338872 DOI: 10.1111/mmi.14144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 02/05/2023]
Abstract
Campylobacter jejuni is the leading cause of foodborne gastrointestinal illness worldwide, and chemotaxis plays an important role in its host colonization and pathogenesis. Although many studies on chemotaxis have focused on the physical organization and signaling mechanism of the system's protein complex, much less is known about the transcriptional regulation of its components. Here, we describe two novel regulators, CJJ81176_0275 and CJJ81176_0276 (designated as CheP and CheQ), which specifically activate the transcription of the chemotaxis core genes cheV, cheA and cheW in C. jejuni and they are also essential for chemotactic responses. CheP has a single HD-related output domain (HDOD) domain and can promote CheQ binding to the cheVAW operon promoter through a protein-protein interaction. Mutagenesis analyses identified key residues critical for CheP function and/or interaction with CheQ. Further structural characterization of CheQ revealed a novel fold with strong positive surface charges that allow for its DNA binding. These findings reveal the gene regulatory mechanism of the chemotaxis system in an important bacterial pathogen and provide potential anti-virulence targets for campylobacteriosis treatment. In addition, ChePQ is an example of how proteins with the widespread but functionally obscure HDOD can coordinate with a signal output DNA-binding protein/domain to regulate the expression of important signaling pathways.
Collapse
Affiliation(s)
- Guihong Cha
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), Collaborative Innovation Center of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ran Mo
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), Collaborative Innovation Center of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
14
|
A cheZ-Like Gene in Azorhizobium caulinodans Is a Key Gene in the Control of Chemotaxis and Colonization of the Host Plant. Appl Environ Microbiol 2018; 84:AEM.01827-17. [PMID: 29150498 DOI: 10.1128/aem.01827-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis can provide bacteria with competitive advantages for survival in complex environments. The CheZ chemotaxis protein is a phosphatase, affecting the flagellar motor in Escherichia coli by dephosphorylating the response regulator phosphorylated CheY protein (CheY∼P) responsible for clockwise rotation. A cheZ gene has been found in Azorhizobium caulinodans ORS571, in contrast to other rhizobial species studied so far. The CheZ protein in strain ORS571 has a conserved motif similar to that corresponding to the phosphatase active site in E. coli The construction of a cheZ deletion mutant strain and of cheZ mutant strains carrying a mutation in residues of the putative phosphatase active site showed that strain ORS571 participates in chemotaxis and motility, causing a hyperreversal behavior. In addition, the properties of the cheZ deletion mutant revealed that ORS571 CheZ is involved in other physiological processes, since it displayed increased flocculation, biofilm formation, exopolysaccharide (EPS) production, and host root colonization. In particular, it was observed that the expression of several exp genes, involved in EPS synthesis, was upregulated in the cheZ mutant compared to that in the wild type, suggesting that CheZ negatively controls exp gene expression through an unknown mechanism. It is proposed that CheZ influences the Azorhizobium-plant association by negatively regulating early colonization via the regulation of EPS production. This report established that CheZ in A. caulinodans plays roles in chemotaxis and the symbiotic association with the host plant.IMPORTANCE Chemotaxis allows bacteria to swim toward plant roots and is beneficial to the establishment of various plant-microbe associations. The level of CheY phosphorylation (CheY∼P) is central to the chemotaxis signal transduction. The mechanism of the signal termination of CheY∼P remains poorly characterized among Alphaproteobacteria, except for Sinorhizobium meliloti, which does not contain CheZ but which controls CheY∼P dephosphorylation through a phosphate sink mechanism. Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata, has an orphan cheZ gene besides two cheY genes similar to those in S. meliloti In addition to controlling the chemotaxis response, the CheZ-like protein in strain ORS571 is playing a role by decreasing bacterial adhesion to the host plant, in contrast to the general situation where chemotaxis-associated proteins promote adhesion. In this study, we identified a CheZ-like protein among Alphaproteobacteria functioning in chemotaxis and the A. caulinodans-S. rostrata symbiosis.
Collapse
|
15
|
Johnson KS, Ottemann KM. Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr Opin Microbiol 2017; 41:51-57. [PMID: 29202336 DOI: 10.1016/j.mib.2017.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects half of the world's population, causing gastritis, peptic ulcers, and gastric cancer. To establish chronic stomach infection, H. pylori utilizes chemotaxis, driven by a conserved signal transduction system. Chemotaxis allows H. pylori to sense an array of environmental and bacterial signals within the stomach, guiding its motility towards its preferred niche within the gastric mucosa and glands. Fine-tuned localization, regulated by the chemotaxis system, enables robust colonization during the acute stage of infection. During chronic infection, chemotaxis helps maintain bacterial populations and modulates the host immune response. Given its importance in host colonization and disease, chemotaxis is an attractive target for future treatments against H. pylori infections.
Collapse
Affiliation(s)
- Kevin S Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
16
|
Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 2017; 74:863-869. [PMID: 28444418 PMCID: PMC5447363 DOI: 10.1007/s00284-017-1256-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
This review aimed to investigate the role of Helicobacter pylori flagella on the pathogenicity of this bacterium in humans. Helicobacter pylori is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of H. pylori flagella is to provide motility. We believe that H. pylori flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between H. pylori flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in H. pylori.
Collapse
Affiliation(s)
- Haiying Gu
- Medical School, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Cooperation of two distinct coupling proteins creates chemosensory network connections. Proc Natl Acad Sci U S A 2017; 114:2970-2975. [PMID: 28242706 DOI: 10.1073/pnas.1618227114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA-CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.
Collapse
|
18
|
Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography. J Bacteriol 2016; 199:e00695-16. [PMID: 27849173 DOI: 10.1128/jb.00695-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a bacterial pathogen that can cause many gastrointestinal diseases including ulcers and gastric cancer. A unique chemotaxis-mediated motility is critical for H. pylori to colonize in the human stomach and to establish chronic infection, but the underlying molecular mechanisms are not well understood. Here we employ cryo-electron tomography to reveal detailed structures of the H. pylori cell envelope including the sheathed flagella and chemotaxis arrays. Notably, H. pylori possesses a distinctive periplasmic cage-like structure with 18-fold symmetry. We propose that this structure forms a robust platform for recruiting 18 torque generators, which likely provide the higher torque needed for swimming in high-viscosity environments. We also reveal a series of key flagellar assembly intermediates, providing structural evidence that flagellar assembly is tightly coupled with biogenesis of the membrane sheath. Finally, we determine the structure of putative chemotaxis arrays at the flagellar pole, which have implications for how direction of flagellar rotation is regulated. Together, our pilot cryo-ET studies provide novel structural insights into the unipolar flagella of H. pylori and lay a foundation for a better understanding of the unique motility of this organism. IMPORTANCE Helicobacter pylori is a highly motile bacterial pathogen that colonizes approximately 50% of the world's population. H. pylori can move readily within the viscous mucosal layer of the stomach. It has become increasingly clear that its unique flagella-driven motility is essential for successful gastric colonization and pathogenesis. Here we use advanced imaging techniques to visualize novel in situ structures with unprecedented detail in intact H. pylori cells. Remarkably, H. pylori possesses multiple unipolar flagella, which are driven by one of the largest flagellar motors found in bacteria. These large motors presumably provide higher torque needed by the bacterial pathogens to navigate in viscous environment of the human stomach.
Collapse
|
19
|
Constantino MA, Jabbarzadeh M, Fu HC, Bansil R. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. SCIENCE ADVANCES 2016; 2:e1601661. [PMID: 28138539 PMCID: PMC5262464 DOI: 10.1126/sciadv.1601661] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/12/2016] [Indexed: 05/17/2023]
Abstract
It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion.
Collapse
Affiliation(s)
| | - Mehdi Jabbarzadeh
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Henry C. Fu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Corresponding author. (H.C.F.); (R.B.)
| | - Rama Bansil
- Department of Physics, Boston University, Boston MA 02215, USA
- Corresponding author. (H.C.F.); (R.B.)
| |
Collapse
|
20
|
The Helicobacter pylori CZB Cytoplasmic Chemoreceptor TlpD Forms an Autonomous Polar Chemotaxis Signaling Complex That Mediates a Tactic Response to Oxidative Stress. J Bacteriol 2016; 198:1563-75. [PMID: 27002127 DOI: 10.1128/jb.00071-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Cytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor is Helicobacter pylori TlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all tested H. pylori strains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allow H. pylori to avoid areas of the stomach with high concentrations of reactive oxygen species. IMPORTANCE Helicobacter pylori senses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aids H. pylori in encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions. H. pylori encounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.
Collapse
|
21
|
Behrens W, Schweinitzer T, McMurry JL, Loewen PC, Buettner FFR, Menz S, Josenhans C. Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions. Sci Rep 2016; 6:23582. [PMID: 27045738 PMCID: PMC4820699 DOI: 10.1038/srep23582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.
Collapse
Affiliation(s)
- Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tobias Schweinitzer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonathan L McMurry
- Department of Molecular &Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Falk F R Buettner
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research, partner site Hannover-Braunschweig, Germany
| |
Collapse
|
22
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
23
|
Keilberg D, Ottemann KM. HowHelicobacter pylorisenses, targets and interacts with the gastric epithelium. Environ Microbiol 2016; 18:791-806. [DOI: 10.1111/1462-2920.13222] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Daniela Keilberg
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| |
Collapse
|
24
|
Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Abedi V, Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7:3-21. [PMID: 26939848 PMCID: PMC4856448 DOI: 10.1080/19490976.2015.1116673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5-15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| |
Collapse
|