1
|
Yang Y, Li Y, Zhu J. Research progress on the function and regulatory pathways of amino acid permeases in fungi. World J Microbiol Biotechnol 2024; 40:392. [PMID: 39581943 DOI: 10.1007/s11274-024-04199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
Collapse
Affiliation(s)
- Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| |
Collapse
|
2
|
García-Sánchez VJ, Sánchez-López KL, Esquivel Méndez JJ, Sánchez-Hernández D, Cervantes-Chávez JA, Landeros-Jaime F, Mendoza-Mendoza A, Vega-Arreguín JC, Esquivel-Naranjo EU. Carbon and Nitrogen Sources Influence Parasitic Responsiveness in Trichoderma atroviride NI-1. J Fungi (Basel) 2024; 10:671. [PMID: 39452623 PMCID: PMC11508198 DOI: 10.3390/jof10100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Parasitic species of Trichoderma use hydrolytic enzymes to destroy the host cell wall. Preferent carbon and nitrogen sources suppress the expression of genes related to parasitism. Here, different nutrients were evaluated in the parasitic isolated NI-1, which was identified as Trichoderma atroviride. The genes cbh1 and chb2 (cellobiohydrolases), bgl3.1 (endoglucanase), and pra1 and prb1 (proteinases) were poorly expressed during the interaction between NI-1 and Phytophthora capsici on PDA. However, gene expression improved on minimal medium with preferent and alternative carbon sources. Dextrin and glucose stimulated higher transcript levels than cellulose, sucrose, and glycerol. Also, ammonium stimulated a stronger parasitic responsiveness than the alternative nitrogen sources. During interaction against different phytopathogens, NI-1 detects their host differentially from a distance due to the cbh1 and cbh2 genes being only induced by P. capsici. The pra1 and ech42 genes were induced before contact with Botrytis cinerea and Rhizoctonia solani, while when confronted with P. capsici they were stimulated until contact and overgrowth. The prb1 and bgl3.1 genes were induced before contact against the three-host assayed. Overall, T. atroviride prefers to parasitize and has the capacity to distinguish between an oomycete and a fungus, but nutrient quality regulates its parasitic responsiveness.
Collapse
Affiliation(s)
- Víctor Javier García-Sánchez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Karina Lizbeth Sánchez-López
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Juana Jazmín Esquivel Méndez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Daniel Sánchez-Hernández
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | - Fidel Landeros-Jaime
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
| | | | - Julio Cesar Vega-Arreguín
- Laboratory of AgroGenomic Sciences, National School of Higher Studies, National Autonomous University of Mexico, Guanajuato 37684, Mexico;
| | - Edgardo Ulises Esquivel-Naranjo
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76140, Mexico; (V.J.G.-S.); (K.L.S.-L.); (J.J.E.M.); (D.S.-H.); (J.A.C.-C.); (F.L.-J.)
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
3
|
Shao M, Xu F, Ke X, Huang M, Chu J. Enhancing erythromycin production in Saccharopolyspora erythraea through rational engineering and fermentation refinement: A Design-Build-Test-Learn approach. Biotechnol J 2024; 19:e2400039. [PMID: 38797723 DOI: 10.1002/biot.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Industrial production of bioactive compounds from actinobacteria, such as erythromycin and its derivatives, faces challenges in achieving optimal yields. To this end, the Design-Build-Test-Learn (DBTL) framework, a systematic metabolic engineering approach, was employed to enhance erythromycin production in Saccharopolyspora erythraea (S. erythraea) E3 strain. A genetically modified strain, S. erythraea E3-CymRP21-dcas9-sucC (S. erythraea CS), was developed by suppressing the sucC gene using an inducible promoter and dcas9 protein. The strain exhibited improved erythromycin synthesis, attributed to enhanced precursor synthesis and increased NADPH availability. Transcriptomic and metabolomic analyses revealed altered central carbon metabolism, amino acid metabolism, energy metabolism, and co-factor/vitamin metabolism in CS. Augmented amino acid metabolism led to nitrogen depletion, potentially causing cellular autolysis during later fermentation stages. By refining the fermentation process through ammonium sulfate supplementation, erythromycin yield reached 1125.66 mg L-1, a 43.5% increase. The results demonstrate the power of the DBTL methodology in optimizing erythromycin production, shedding light on its potential for revolutionizing antibiotic manufacturing in response to the global challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Minghao Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Ge X, Chen J, Gu J, Yi W, Xu S, Tan L, Liu T. Metabolomic analysis of hydroxycinnamic acid inhibition on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:165. [PMID: 38252275 PMCID: PMC10803543 DOI: 10.1007/s00253-023-12830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 01/23/2024]
Abstract
Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.
Collapse
Affiliation(s)
- Xiaoli Ge
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Junxiao Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jie Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Wenbo Yi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shujie Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
5
|
Untargeted Metabolomics Combined with Metabolic Flux Analysis Reveals the Mechanism of Sodium Citrate for High S-Adenosyl-Methionine Production by Pichia pastoris. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-adenosyl-methionine (SAM) is crucial for organisms to maintain some physiological functions. However, the inconsistency between high L-methionine feeding rate and yield during SAM production at an industrial scale and its metabolic mechanism have not been elucidated. Here, the cellular metabolic mechanism of feeding sodium citrate to the Pichia pastoris (P. pastoris) G12’/AOX-acs2 strain to enhance SAM production was investigated using untargeted metabolomics and metabolic flux analysis. The results indicated that the addition of sodium citrate has a facilitative effect on SAM production. In addition, 25 metabolites, such as citrate, cis-aconitate, and L-glutamine, were significantly up-regulated, and 16 metabolites, such as glutathione, were significantly down-regulated. Furthermore, these significantly differential metabolites were mainly distributed in 13 metabolic pathways, such as the tricarboxylic acid (TCA) cycle. In addition, the metabolic fluxes of the glycolysis pathway, pentose phosphate pathway, TCA cycle, and glyoxylate pathway were increased by 20.45–29.32%, respectively, under the condition of feeding sodium citrate compared with the control. Finally, it was speculated that the upregulation of dihydroxyacetone level might increase the activity of alcohol oxidase AOX1 to promote methanol metabolism by combining metabolomics and fluxomics. Meanwhile, acetyl coenzyme A might enhance the activity of citrate synthase through allosteric activation to promote the flux of the TCA cycle and increase the level of intracellular oxidative phosphorylation, thus contributing to SAM production. These new insights into the L-methionine utilization for SAM biosynthesis by systematic biology in P. pastoris provides a novel vision for increasing its industrial production.
Collapse
|
6
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
7
|
Zeng L, Si Z, Zhao X, Feng P, Huang J, Long X, Yi Y. Metabolome analysis of the response and tolerance mechanisms of Saccharomyces cerevisiae to formic acid stress. Int J Biochem Cell Biol 2022; 148:106236. [PMID: 35688405 DOI: 10.1016/j.biocel.2022.106236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Various inhibitors are produced during the hydrolysis of lignocellulosic biomass that can interfere with the growth of yeast cells and the production of bioethanol. Formic acid is a common weak acid inhibitor present in lignocellulosic hydrolysate that has toxic effects on yeast cells. However, the mechanism of the response of Saccharomyces cerevisiae to formic acid is not fully understood. In this study, liquid chromatography-mass spectrometry (LC-MS) was used to investigate the effects of formic acid treatment on cell metabolites of S. cerevisiae. Treatment with different concentrations of formic acid significantly inhibited the growth of yeast cells, reduced the yield of ethanol, prolonged the cell fermentation cycle, and increased the content of malondialdehyde. Principal component analysis and orthogonal partial least squares discriminant analysis showed that 55 metabolites were significantly altered in S. cerevisiae after formic acid treatment. The metabolic relevance of these compounds in the response of S. cerevisiae to formic acid stress was investigated. Formic acid can cause oxidative stress, inhibit protein synthesis, and damage DNA in S. cerevisiae, and these are possible reasons for the inhibition of S. cerevisiae cell growth. In addition, the levels of several aromatic amino acids identified in the cells of formic acid-treated yeast were increased; the biosynthesis of nucleotides was slowed, and energy consumption was reduced. These mechanisms may help to improve the tolerance of yeast cells to formic acid. The results described herein highlight our current understanding of the molecular mechanism of the response of S. cerevisiae to formic acid. The study will provide a theoretical basis for research on the tolerance mechanisms of S. cerevisiae.
Collapse
Affiliation(s)
- Lingjie Zeng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zaiyong Si
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xuemei Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Pixue Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Jinxiang Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xiufeng Long
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China.
| |
Collapse
|
8
|
Chen Y, Zeng W, Ma W, Ma W, Zhou J. Chromatin Regulators Ahc1p and Eaf3p Positively Influence Nitrogen Metabolism in Saccharomyces cerevisiae. Front Microbiol 2022; 13:883934. [PMID: 35620110 PMCID: PMC9127870 DOI: 10.3389/fmicb.2022.883934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
There is a complex regulatory network of nitrogen metabolism in Saccharomyces cerevisiae, and many details of this regulatory network have not been revealed. This study explored the global regulation of nitrogen metabolism in S. cerevisiae from an epigenetic perspective. Comparative transcriptome analysis of S. cerevisiae S288C treated with 30 nitrogen sources identified nine chromatin regulators (CRs) that responded significantly to different nitrogen sources. Functional analysis showed that among the CRs identified, Ahc1p and Eaf3p promoted the utilization of non-preferred nitrogen sources through global regulation of nitrogen metabolism. Ahc1p regulated nitrogen metabolism through amino acid transport, nitrogen catabolism repression (NCR), and the Ssy1p-Ptr3p-Ssy5p signaling sensor system. Eaf3p regulated nitrogen metabolism via amino acid transport and NCR. The regulatory mechanisms of the effects of Ahc1p and Eaf3p on nitrogen metabolism depended on the function of their histone acetyltransferase complex ADA and NuA4. These epigenetic findings provided new insights for a deeper understanding of the nitrogen metabolism regulatory network in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjian Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Yang Y, Zhong H, Yang N, Zhu D, Li J, Yang Z, Yang T. Effects of the proteins of indica rice and indica waxy rice on the formation of volatiles of sweet rice wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yurong Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Haiyan Zhong
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Ning Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Dongcai Zhu
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Jie Li
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Zhilong Yang
- Xiangjiao Liquor Industry Co. Ltd. Shaoyang 422000 China
| | - Tao Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| |
Collapse
|
10
|
Kapetanakis GC, Gournas C, Prévost M, Georis I, André B. Overlapping Roles of Yeast Transporters Aqr1, Qdr2, and Qdr3 in Amino Acid Excretion and Cross-Feeding of Lactic Acid Bacteria. Front Microbiol 2021; 12:752742. [PMID: 34887841 PMCID: PMC8649695 DOI: 10.3389/fmicb.2021.752742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial species occupying the same ecological niche or codeveloping during a fermentation process can exchange metabolites and mutualistically influence each other’s metabolic states. For instance, yeast can excrete amino acids, thereby cross-feeding lactic acid bacteria unable to grow without an external amino acid supply. The yeast membrane transporters involved in amino acid excretion remain poorly known. Using a yeast mutant overproducing and excreting threonine (Thr) and its precursor homoserine (Hom), we show that excretion of both amino acids involves the Aqr1, Qdr2, and Qdr3 proteins of the Drug H+-Antiporter Family (DHA1) family. We further investigated Aqr1 as a representative of these closely related amino acid exporters. In particular, structural modeling and molecular docking coupled to mutagenesis experiments and excretion assays enabled us to identify residues in the Aqr1 substrate-binding pocket that are crucial for Thr and/or Hom export. We then co-cultivated yeast and Lactobacillus fermentum in an amino-acid-free medium and found a yeast mutant lacking Aqr1, Qdr2, and Qdr3 to display a reduced ability to sustain the growth of this lactic acid bacterium, a phenotype not observed with strains lacking only one of these transporters. This study highlights the importance of yeast DHA1 transporters in amino acid excretion and mutualistic interaction with lactic acid bacteria.
Collapse
Affiliation(s)
- George C Kapetanakis
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Georis
- Transport of Amino Acids, Sensing and Signaling in Eukaryotes, Labiris, Brussels, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| |
Collapse
|
11
|
Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021; 251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Organisms have cellular machinery that is focused on optimum utilization of resources to maximize growth and survival depending on various environmental and developmental factors. Catabolite repression is a strategy utilized by various species of bacteria and fungi to accommodate changes in the environment such as the depletion of resources, or an abundance of less-favored nutrient sources. Catabolite repression allows for the rapid use of certain substrates like glucose over other carbon sources. Effective handling of carbon and nitrogen catabolite repression in microorganisms is crucial to outcompete others in nutrient limiting conditions. Investigations into genes and proteins linked to preferential uptake of different nutrients under various environmental conditions can aid in identifying regulatory mechanisms that are crucial for optimum growth and survival of microorganisms. The exact time and way bacteria and fungi switch their utilization of certain nutrients is of great interest for scientific, industrial, and clinical reasons. Catabolite repression is of great significance for industrial applications that rely on microorganisms for the generation of valuable bio-products. The impact catabolite repression has on virulence of pathogenic bacteria and fungi and disease progression in hosts makes it important area of interest in medical research for the prevention of diseases and developing new treatment strategies. Regulatory networks under catabolite repression exemplify the flexibility and the tremendous diversity that is found in microorganisms and provides an impetus for newer insights into these networks.
Collapse
Affiliation(s)
- Abhinav Nair
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
12
|
Effect of overexpression of SNF1 on the transcriptional and metabolic landscape of baker's yeast under freezing stress. Microb Cell Fact 2021; 20:10. [PMID: 33413411 PMCID: PMC7792352 DOI: 10.1186/s12934-020-01503-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background Freezing stress is the key factor that affecting the cell activity and fermentation performance of baker’s yeast in frozen dough production. Generally, cells protect themselves from injury and maintain metabolism by regulating gene expression and modulating metabolic patterns in stresses. The Snf1 protein kinase is an important regulator of yeast in response to stresses. In this study, we aim to study the role of the catalytic subunit of Snf1 protein kinase in the cell tolerance and dough leavening ability of baker’s yeast during freezing. Furthermore, the effects of SNF1 overexpression on the global gene expression and metabolite profile of baker’s yeast before and after freezing were analysed using RNA-sequencing and untargeted UPLC − QTOF-MS/MS, respectively. Results The results suggest that overexpression of SNF1 was effective in enhancing the cell tolerance and fermentation capacity of baker’s yeast in freezing, which may be related to the upregulated proteasome, altered metabolism of carbon sources and protectant molecules, and changed cell membrane components. SNF1 overexpression altered the level of leucin, proline, serine, isoleucine, arginine, homocitrulline, glycerol, palmitic acid, lysophosphatidylcholine (LysoPC), and lysophosphatidylethanolamine (LysoPE) before freezing, conferring cells resistance in freezing. After freezing, relative high level of proline, lysine, and glycerol maintained by SNF1 overexpression with increased content of LysoPC and LysoPE. Conclusions This study will increase the knowledge of the cellular response of baker’s yeast cells to freezing and provide new opportunities for the breeding of low-temperature resistant strains.
Collapse
|
13
|
Hapeta P, Kerkhoven EJ, Lazar Z. Nitrogen as the major factor influencing gene expression in Yarrowia lipolytica. ACTA ACUST UNITED AC 2020; 27:e00521. [PMID: 32923379 PMCID: PMC7476234 DOI: 10.1016/j.btre.2020.e00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Yarrowia lipolytica is an important industrial microorganism used for the production of oleochemicals. The design of effective biotechnological processes with this cell factory requires an in-depth knowledge of its metabolism. Here we present a transcriptomic study of Y. lipolytica grown in the presence of glycerol and glucose, and mixture of both at different carbon to nitrogen ratios. It emerged that the transcriptomic landscape of Y. lipolytica is more sensitive to the nitrogen availability than to the utilized carbon source, as evidenced by more genes being differentially expressed in lower carbon to nitrogen ratio. Specifically, expression of hexokinase (HXK1) is significantly susceptible to changes in nitrogen concentrations. High HXK1 expression in low nitrogen seems to impact other genes which are implicated in tricarboxylic acid cycle and erythritol biosynthesis. We further show that expression of HXK1 and two genes belonging to the sugar porter family might be controlled by GATA-like zinc-finger proteins.
Collapse
Affiliation(s)
- Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| |
Collapse
|
14
|
Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane. PLoS Genet 2020; 16:e1008966. [PMID: 32776922 PMCID: PMC7440668 DOI: 10.1371/journal.pgen.1008966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen. The lysosome-like vacuole of the yeast Saccharomyces cerevisiae is an important storage compartment for diverse nutrients, including the cationic amino acid arginine, which accumulates at high concentrations in this organelle in nitrogen-replete cells. When these cells are transferred to a nitrogen-free medium, vacuolar arginine is mobilized to the cytosol, where it is used as an alternative nitrogen source to sustain growth. Although this phenomenon has been observed since the 1980s, the identity of the vacuolar transporters involved in the accumulation and the mobilization of arginine is not well established, and whether these processes are regulated according to nutritional cues remains unknown. In this study, we exploited in vitro and in vivo uptake assays in vacuoles to identify and characterize Vsb1 and Ypq2 as vacuolar membrane proteins mediating import and export of arginine, respectively. We further provide evidence that Vsb1 and Ypq2 are inversely regulated according to the nitrogen status of the cell. Our study sheds new light on the poorly studied topic of the diversity and metabolic control of vacuolar transporters. It also raises novel questions about the molecular mechanisms underlying their coordinated regulation and, by extension, the regulation of lysosomal transporters in human cells.
Collapse
|
15
|
Vallejo B, Matallana E, Aranda A. Saccharomyces cerevisiae nutrient signaling pathways show an unexpected early activation pattern during winemaking. Microb Cell Fact 2020; 19:124. [PMID: 32505207 PMCID: PMC7275465 DOI: 10.1186/s12934-020-01381-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
Background Saccharomyces cerevisiae wine strains can develop stuck or sluggish fermentations when nutrients are scarce or suboptimal. Nutrient sensing and signaling pathways, such as PKA, TORC1 and Snf1, work coordinately to adapt growth and metabolism to the amount and balance of the different nutrients in the medium. This has been exhaustively studied in laboratory strains of S. cerevisiae and laboratory media, but much less under industrial conditions. Results Inhibitors of such pathways, like rapamycin or 2-deoxyglucose, failed to discriminate between commercial wine yeast strains with different nutritional requirements, but evidenced genetic variability among industrial isolates, and between laboratory and commercial strains. Most signaling pathways involve events of protein phosphorylation that can be followed as markers of their activity. The main pathway to promote growth in the presence of nitrogen, the TORC1 pathway, measured by the phosphorylation of Rps6 and Par32, proved active at the very start of fermentation, mainly on day 1, and ceased soon afterward, even before cellular growth stopped. Transcription factor Gln3, which activates genes subject to nitrogen catabolite repression, was also active for the first hours, even when ammonium and amino acids were still present in media. Snf1 kinase was activated only when glucose was exhausted under laboratory conditions, but was active from early fermentation stages. The same results were generally obtained when nitrogen was limiting, which indicates a unique pathway activation pattern in winemaking. As PKA remained active throughout fermentation, it could be the central pathway that controls others, provided sugars are present. Conclusions Wine fermentation is a distinct environmental situation from growth in laboratory media in molecular terms. The mechanisms involved in glucose and nitrogen repression respond differently under winemaking conditions.
Collapse
Affiliation(s)
- Beatriz Vallejo
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Agustín Aranda
- Institute for Integrative Systems Biology, I2SysBio, University of Valencia-CSIC, Parc Cientific UV. Av. Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
16
|
Dlamini BC, Taylor JRN, Buys EM. Influence of ammonia and lysine supplementation on yeast growth and fermentation with respect to gluten‐free type brewing using unmalted sorghum grain. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bhekisisa C. Dlamini
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
- Department of Biotechnology & Food Technology University of Johannesburg P.O. Box 524 Auckland Park South Africa
| | - John R. N. Taylor
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| | - Elna M. Buys
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| |
Collapse
|
17
|
Gobert A, Tourdot-Maréchal R, Sparrow C, Morge C, Alexandre H. Influence of nitrogen status in wine alcoholic fermentation. Food Microbiol 2019; 83:71-85. [PMID: 31202421 DOI: 10.1016/j.fm.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of "preferred" versus "non-preferred" nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New winemaking strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Céline Sparrow
- SAS Sofralab, 79, Av. A.A. Thévenet, BP 1031, Magenta, France
| | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
18
|
Kobayashi J, Sasaki D, Bamba T, Hasunuma T, Kondo A. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2018; 103:1243-1254. [DOI: 10.1007/s00253-018-9493-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
19
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
20
|
Varlakhanova NV, Tornabene BA, Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32. Mol Biol Cell 2018; 29:2751-2765. [PMID: 30156471 PMCID: PMC6249832 DOI: 10.1091/mbc.e18-03-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
21
|
Hermes Transposon Mutagenesis Shows [URE3] Prion Pathology Prevented by a Ubiquitin-Targeting Protein: Evidence for Carbon/Nitrogen Assimilation Cross Talk and a Second Function for Ure2p in Saccharomyces cerevisiae. Genetics 2018; 209:789-800. [PMID: 29769283 DOI: 10.1534/genetics.118.300981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).
Collapse
|
22
|
Saliba E, Evangelinos M, Gournas C, Corrillon F, Georis I, André B. The yeast H +-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H +-coupled nutrient uptake. eLife 2018; 7:31981. [PMID: 29570051 PMCID: PMC5915174 DOI: 10.7554/elife.31981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H+ influx catalyzed by amino-acid/H+ symporters. H+-dependent uptake of other nutrients, ionophore-mediated H+ diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H+ elicited by these processes stimulates the compensating H+-export activity of the plasma membrane H+-ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H+-ATPase, H+ influx or increase fails to activate TORC1. Our results show that H+ influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. Cells adapt their growth rate depending on the amount of nutrients available. The protein complex called TORC1 plays a central role in this. When nutrients are abundant, TORC1 is very active and stimulates the production of proteins and other molecules needed for the cell to grow. However, when nutrients such as amino acids become scarce, TORC1 reduces its activity and allows the cells to adapt to starvation. This TORC1-mediated control of the metabolism is crucial for the cell to survive, and faulty TORC1 proteins have been associated with several diseases including cancers. TORC1 was originally discovered in yeast, which provides a powerful model to study this control system. However, until now, it was not known how TORC1 is reactivated when amino acids are added to cells that have been starved of these molecules. Knowing the answer to this question would allow us to better understand how the availability of nutrients controls the activity of TORC1. Now, Saliba et al. have discovered that TORC1 is not reactivated by the amino acids themselves, but by protons, which are positively charged hydrogen ions that travel into the cell together with the amino acids. This influx of protons is the driving force behind the active transport of amino acids and other nutrients into the cell, and potentially serves as a general signal to activate TORC1 in response to the uptake of nutrients, especially when cells have been starved. Furthermore, the results showed that a specific enzyme in the cell membrane plays an essential role in activating TORC1. This enzyme pumps the protons out of the cell to compensate for their influx and to maintain the proton gradient in the membrane that drives the absorption of nutrients. When this enzyme was replaced with an equivalent plant enzyme, the proton-coupled nutrient uptake did not activate TORC1 in the yeast cells. These findings may help scientists who are interested in how TORC1 is regulated in organisms other than mammals, such as plants or fungi. A next step will be to find out how exactly the proton pump in the cell membrane helps to activate TORC1.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Minoas Evangelinos
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Christos Gournas
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Florent Corrillon
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Brussels, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| |
Collapse
|
23
|
Parente DC, Cajueiro DBB, Moreno ICP, Leite FCB, De Barros Pita W, De Morais MA. On the catabolism of amino acids in the yeast Dekkera bruxellensis
and the implications for industrial fermentation processes. Yeast 2017; 35:299-309. [DOI: 10.1002/yea.3290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/04/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Fernanda Cristina Bezerra Leite
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Biology; Federal Rural University of Pernambuco; Recife PE 52171-900 Brazil
| | - Will De Barros Pita
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Antibiotics; PE 50760-901 Brazil
| | - Marcos Antonio De Morais
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Genetics; Federal University of Pernambuco; Recife PE 50760-901 Brazil
| |
Collapse
|
24
|
Villers J, Savocco J, Szopinska A, Degand H, Nootens S, Morsomme P. Study of the Plasma Membrane Proteome Dynamics Reveals Novel Targets of the Nitrogen Regulation in Yeast. Mol Cell Proteomics 2017; 16:1652-1668. [PMID: 28679684 PMCID: PMC5587864 DOI: 10.1074/mcp.m116.064923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Yeast cells, to be able to grow on a wide variety of nitrogen sources, regulate the set of nitrogen transporters present at their plasma membrane. Such regulation relies on both transcriptional and post-translational events. Although microarray studies have identified most nitrogen-sensitive genes, nitrogen-induced post-translational regulation has only been studied for very few proteins among which the general amino acid permease Gap1. Adding a preferred nitrogen source to proline-grown cells triggers Gap1 endocytosis and vacuolar degradation in an Rsp5-Bul1/2-dependent manner. Here, we used a proteomic approach to follow the dynamics of the plasma membrane proteome after addition of a preferred nitrogen source. We identified new targets of the nitrogen regulation and four transporters of poor nitrogen sources-Put4, Opt2, Dal5, and Ptr2-that rapidly decrease in abundance. Although the kinetics is different for each transporter, we found that three of them-Put4, Dal5, and Ptr2-are endocytosed, like Gap1, in an Rsp5-dependent manner and degraded in the vacuole. Finally, we showed that Gap1 stabilization at the plasma membrane, through deletion of Bul proteins, regulates the abundance of Put4, Dal5 and Ptr2.
Collapse
Affiliation(s)
- Jennifer Villers
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Jérôme Savocco
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Aleksandra Szopinska
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Hervé Degand
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Sylvain Nootens
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Pierre Morsomme
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| |
Collapse
|
25
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
26
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|