1
|
Graham CI, Gierys AJ, MacMartin TL, Penner TV, Beck JC, Prehna G, de Kievit TR, Brassinga AKC. Transcription factors DksA and PsrA are synergistic contributors to Legionella pneumophila virulence in Acanthamoeba castellanii protozoa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40231716 DOI: 10.1099/mic.0.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The environmental bacterium Legionella pneumophila, an intracellular parasite of free-living freshwater protozoa as well as an opportunistic human pathogen, has a biphasic lifestyle. The switch from the vegetative replicative form to the environmentally resilient transmissive phase form is governed by a complex stringent response-based regulatory network that includes RNA polymerase co-factor DksA. Here, we report that, through a dysfunctional DksA mutation (DksA1), a synergistic interplay was discovered between DksA and transcription regulator PsrA using the Acanthamoeba castellanii protozoan infection model. Surprisingly, in trans expression of PsrA partially rescued the growth defect of a dksA1 strain. Whilst in trans expression of DksA expectantly could fully rescue the growth defect of the dksA1 strain, it could also surprisingly rescue the growth defect of a ΔpsrA strain. Conversely, the severe intracellular growth defect of a ΔdksA strain could be rescued by in trans expression of DksA and DksA1, but not PsrA. In vitro phenotypic assays show that either DksA or DksA1 was required for extended culturability of bacterial cells, but normal cell morphology and pigmentation required DksA only. Comparative structural modelling predicts that the DksA1 mutation affects the coordination of Mg2+ into the active site of RNAP, compromising transcription efficiency. Taken together, we propose that PsrA transcriptionally assists DksA in the expression of select transmissive phase traits. Additionally, in vitro evidence suggests that the long-chain fatty acid metabolic response is mediated by PsrA together with DksA, inferring a novel regulatory link to the stringent response pathway.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Andrew J Gierys
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tiffany V Penner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan C Beck
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gerd Prehna
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
2
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
3
|
Cameron G, Faucher SP. Copper resistance in Legionella pneumophila: Role of genetic factors and host cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177943. [PMID: 39671930 DOI: 10.1016/j.scitotenv.2024.177943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Copper is frequently found in drinking water due to its presence in the natural environment and the widespread usage of copper pipes. This toxic metal has a well-known antimicrobial activity, an activity harnessed in copper‑silver ionization (CSI) to eliminate the opportunistic pathogen Legionella pneumophila from engineered water systems. Despite utilizing the antimicrobial properties of copper in Legionella control, little is known about how copper containing environments affect L.pneumophila populations. The goal of this study is to understand how L. pneumophila responds to copper within a hot water distribution system (HWDS) environment. To answer this question, different sequence types and regulatory mutants were exposed to copper to compare their survival. L. pneumophila isolates of 4 sequence types from 3 different HWDSs exhibited a wide diversity of phenotypes after copper stress. The ΔletA and ΔletS mutants were sensitive to copper, indicating that the LetAS two component system is important for copper resistance. Additionally, transmissive phase cultures were more resistant to copper than replicative phase cultures. Therefore, the regulation of entry into transmissive phase by the LetAS system is essential for L. pneumophila's ability to survive copper stress. In a water system, L. pneumophila replicates within eukaryotic hosts. When cocultured with the host ciliate Tetrahymena pyriformis, L. pneumophila was more resistant to copper than when the bacteria were in a monoculture. No difference in L. pneumophila replication inside of hosts in cocultures with or without copper was observed. This result confirms that the presence of host cells protects L. pneumophila from copper stress.
Collapse
Affiliation(s)
- Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada; Centreau - Centre québécois de recherche sur la gestion de l'eau, Université Laval, Québec, Québec, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada; Centreau - Centre québécois de recherche sur la gestion de l'eau, Université Laval, Québec, Québec, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
4
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Shapira N, Zusman T, Segal G. The LysR-type transcriptional regulator LelA co-regulates various effectors in different Legionella species. Mol Microbiol 2024; 121:243-259. [PMID: 38153189 DOI: 10.1111/mmi.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The intracellular pathogen Legionella pneumophila translocates more than 300 effector proteins into its host cells. The expression levels of the genes encoding these effectors are orchestrated by an intricate regulatory network. Here, we introduce LelA, the first L. pneumophila LysR-type transcriptional regulator of effectors. Through bioinformatic and experimental analyses, we identified the LelA target regulatory element and demonstrated that it directly activates the expression of three L. pneumophila effectors (legL7, legL6, and legU1). We further found that the gene encoding LelA is positively regulated by the RpoS sigma factor, thus linking it to the known effector regulatory network. Examination of other species throughout the Legionella genus revealed that this regulatory element is found upstream of 34 genes encoding validated effectors, putative effectors, and hypothetical proteins. Moreover, ten of these genes were examined and found to be activated by the L. pneumophila LelA as well as by their orthologs in the corresponding species. LelA represents a novel type of Legionella effector regulator, which coordinates the expression of both adjacently and distantly located effector-encoding genes, thus forming small groups of co-regulated effectors.
Collapse
Affiliation(s)
- Naomi Shapira
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Zusman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Zhao Z, Hu Y, Hu Y, White AP, Wang Y. Features and algorithms: facilitating investigation of secreted effectors in Gram-negative bacteria. Trends Microbiol 2023; 31:1162-1178. [PMID: 37349207 DOI: 10.1016/j.tim.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Gram-negative bacteria deliver effector proteins through type III, IV, or VI secretion systems (T3SSs, T4SSs, and T6SSs) into host cells, causing infections and diseases. In general, effector proteins for each of these distinct secretion systems lack homology and are difficult to identify. Sequence analysis has disclosed many common features, helping us to understand the evolution, function, and secretion mechanisms of the effectors. In combination with various algorithms, the known common features have facilitated accurate prediction of new effectors. Ensemblers or integrated pipelines achieve a better prediction of performance, which combines multiple computational models or modules with multidimensional features. Natural language processing (NLP) models also show the merits, which could enable discovery of novel features and, in turn, facilitate more precise effector prediction, extending our knowledge about each secretion mechanism.
Collapse
Affiliation(s)
- Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Aaron P White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China; Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
7
|
Cambronne ED, Ayres C, Dowdell KS, Lawler DF, Saleh NB, Kirisits MJ. Protozoan-Priming and Magnesium Conditioning Enhance Legionella pneumophila Dissemination and Monochloramine Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14871-14880. [PMID: 37756220 DOI: 10.1021/acs.est.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Opportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, Legionella pneumophila (Lp) also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that Lp grown within FLA show increased infectivity toward subsequent FLA or human cells (i.e., macrophage), via a process we previously coined "protozoan-priming". The objectives of this study are (i) to identify in Lp a key genetic determinant of how protozoan-priming increases its infectivity, (ii) to determine the chemical stimulus within FLA to which Lp responds during protozoan-priming, and (iii) to determine if more infectious forms of Lp also exhibit enhanced disinfectant resistance. Using Acanthamoeba castellanii as a FLA host, the priming effect was isolated to Lp's sidGV locus, which is activated upon sensing elevated magnesium concentrations. Supplementing growth medium with 8 mM magnesium is sufficient to produce Lp grown in vitro with an infectivity equivalent to that of Lp grown via the protozoan-primed route. Both Lp forms with increased infectivity (FLA-grown and Mg2+-supplemented) exhibit greater monochloramine resistance than Lp grown in standard media, indicating that passage through FLA not only increases Lp's infectivity but also enhances its monochloramine resistance. Therefore, laboratory-based testing of disinfection strategies should employ conditions that simulate or replicate intracellular growth to accurately assess disinfectant resistance.
Collapse
Affiliation(s)
- Eric D Cambronne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Craig Ayres
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Katherine S Dowdell
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Desmond F Lawler
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mary Jo Kirisits
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Liang J, Cameron G, Faucher SP. Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 2023; 89:e0066623. [PMID: 37668382 PMCID: PMC10537758 DOI: 10.1128/aem.00666-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
9
|
Escobar-Salom M, Barceló IM, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential. FEMS Microbiol Rev 2023; 47:fuad010. [PMID: 36893807 PMCID: PMC10039701 DOI: 10.1093/femsre/fuad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several β-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked β-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.
Collapse
Affiliation(s)
- María Escobar-Salom
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isabel María Barceló
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
| | - Gabriel Torrens
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University. Försörjningsvägen 2A, SE-901 87 Umeå, Sweden
| | - Antonio Oliver
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlos Juan
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
10
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
11
|
Linsky M, Segal G. A horizontally acquired Legionella genomic island encoding a LuxR type regulator and effector proteins displays variation in gene content and regulation. Mol Microbiol 2021; 116:766-782. [PMID: 34120381 DOI: 10.1111/mmi.14770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.
Collapse
Affiliation(s)
- Marika Linsky
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Graham CI, Patel PG, Tanner JR, Hellinga J, MacMartin TL, Hausner G, Brassinga AKC. Autorepressor PsrA is required for optimal Legionella pneumophila growth in Acanthamoeba castellanii protozoa. Mol Microbiol 2021; 116:624-647. [PMID: 34018265 DOI: 10.1111/mmi.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
Legionella pneumophila possesses a unique intracellular lifecycle featuring distinct morphological stages that include replicative forms and transmissive cyst forms. Expression of genes associated with virulence traits and cyst morphogenesis is concomitant, and governed by a complex stringent response based-regulatory network and the stationary phase sigma factor RpoS. In Pseudomonas spp., rpoS expression is controlled by the autorepressor PsrA, and orthologs of PsrA and RpoS are required for cyst formation in Azotobacter. Here we report that the L. pneumophila psrA ortholog, expressed as a leaderless monocistronic transcript, is also an autorepressor, but is not a regulator of rpoS expression. Further, the binding site sequence recognized by L. pneumophila PsrA is different from that of Pseudomonas PsrA, suggesting a repertoire of target genes unique to L. pneumophila. While PsrA was dispensable for growth in human U937-derived macrophages, lack of PsrA affected bacterial intracellular growth in Acanthamoeba castellanii protozoa, but also increased the quantity of poly-3-hydroxybutyrate (PHB) inclusions in matured transmissive cysts. Interestingly, overexpression of PsrA increased the size and bacterial load of the replicative vacuole in both host cell types. Taken together, we report that PsrA is a host-specific requirement for optimal temporal progression of L. pneumophila intracellular lifecycle in A. castellanii.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Palak G Patel
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jacqueline Hellinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
The Tail-Specific Protease Is Important for Legionella pneumophila To Survive Thermal Stress in Water and inside Amoebae. Appl Environ Microbiol 2021; 87:AEM.02975-20. [PMID: 33608288 DOI: 10.1128/aem.02975-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires' disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems.IMPORTANCE Lp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.
Collapse
|
14
|
Head BM, Graham CI, MacMartin T, Keynan Y, Brassinga AKC. Development of a Fluorescent Tool for Studying Legionella bozemanae Intracellular Infection. Microorganisms 2021; 9:379. [PMID: 33668592 PMCID: PMC7917989 DOI: 10.3390/microorganisms9020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
Legionnaires' disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Christopher I. Graham
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Teassa MacMartin
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Ann Karen C. Brassinga
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| |
Collapse
|
15
|
Quan FS, Kong HH, Lee HA, Chu KB, Moon EK. Identification of differentially expressed Legionella genes during its intracellular growth in Acanthamoeba. Heliyon 2020; 6:e05238. [PMID: 33088972 PMCID: PMC7566939 DOI: 10.1016/j.heliyon.2020.e05238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
Legionella grows intracellularly in free-living amoeba as well as in mammalian macrophages. Until now, the overall gene expression pattern of intracellular Legionella in Acanthamoeba was not fully explained. Intracellular bacteria are capable of not only altering the gene expression of its host, but it can also regulate the expression of its own genes for survival. In this study, differentially expressed Legionella genes within Acanthamoeba during the 24 h intracellular growth period were investigated for comparative analysis. RNA sequencing analysis revealed 3,003 genes from the intracellular Legionella. Among them, 115 genes were upregulated and 1,676 genes were downregulated more than 2 fold compared to the free Legionella. Gene ontology (GO) analysis revealed the suppression of multiple genes within the intracellular Legionella, which were categorized under 'ATP binding' and 'DNA binding' in the molecular function domain. Gene expression of alkylhydroperoxidase, an enzyme involved in virulence and anti-oxidative stress response, was strongly enhanced 24 h post-intracellular growth. Amino acid ABC transporter substrate-binding protein that utilizes energy generation was also highly expressed. Genes associated with alkylhydroperoxidase, glucose pathway, and Dot/Icm type IV secretion system were shown to be differentially expressed. These results contribute to a better understanding of the survival strategies of intracellular Legionella within Acanthamoeba.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Hochstrasser R, Hutter CAJ, Arnold FM, Bärlocher K, Seeger MA, Hilbi H. The structure of the
Legionella
response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Mol Microbiol 2020; 113:1070-1084. [DOI: 10.1111/mmi.14477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ramon Hochstrasser
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | | | - Fabian M. Arnold
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Kevin Bärlocher
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology University of Zürich Zürich Switzerland
| |
Collapse
|
17
|
A Novel Legionella Genomic Island Encodes a Copper-Responsive Regulatory System and a Single Icm/Dot Effector Protein Transcriptionally Activated by Copper. mBio 2020; 11:mBio.03232-19. [PMID: 31992628 PMCID: PMC6989116 DOI: 10.1128/mbio.03232-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila is an intracellular human pathogen that utilizes amoebae as its environmental host. The adaptation of L. pneumophila to the intracellular environment requires coordination of expression of its multicomponent pathogenesis system, which is composed of a secretion system and effector proteins. However, the regulatory factors controlling the expression of this pathogenesis system are only partially uncovered. Here, we discovered a novel regulatory system that is activated by copper and controls the expression of a single effector protein. The genes encoding both the regulatory system and the effector protein are located on a genomic island that undergoes horizontal gene transfer within the Legionella genus. This regulator-effector genomic island represents the first reported case of local regulation of effectors in Legionella. The discovery of this regulatory mechanism is an important step forward in the understanding of how the regulatory network of effectors functions and evolves in the Legionella genus. The intracellular pathogen Legionella pneumophila utilizes the Icm/Dot type IV secretion system to translocate >300 effector proteins into host cells during infection. The regulation of some of these effector-encoding genes was previously shown to be coordinated by several global regulators, including three two-component systems (TCSs) found in all the Legionella species examined. Here, we describe the first Legionella genomic island encoding a single Icm/Dot effector and a dedicated TCS, which regulates its expression. This genomic island, which we named Lci, undergoes horizontal gene transfer in the Legionella genus, and the TCS encoded from this island (LciRS) is homologous to TCSs that control the expression of various metal resistance systems found in other bacteria. We found that the L. pneumophila sensor histidine kinase LciS is specifically activated by copper via a unique, small periplasmic sensing domain. Upon activation by LciS, the response regulator LciR directly binds to a conserved regulatory element and activates the expression of the adjacently located lciE effector-encoding gene. Thus, LciR represents the first local regulator of effectors identified in L. pneumophila. Moreover, we found that the expression of the lciRS operon is repressed by the Fis1 and Fis3 regulators, leading to Fis-mediated effects on copper induction of LciE and silencing of the expression of this genomic island in the absence of copper. This island represents a novel type of effector regulation in Legionella, shedding new light on the ways by which the Legionella pathogenesis system evolves its effector repertoire and expands its activating signals.
Collapse
|
18
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
20
|
Mechaly AE, Haouz A, Sassoon N, Buschiazzo A, Betton JM, Alzari PM. Conformational plasticity of the response regulator CpxR, a key player in Gammaproteobacteria virulence and drug-resistance. J Struct Biol 2018; 204:165-171. [DOI: 10.1016/j.jsb.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
|
21
|
Feldheim YS, Zusman T, Kapach A, Segal G. The single-domain response regulator LerC functions as a connector protein in theLegionella pneumophilaeffectors regulatory network. Mol Microbiol 2018; 110:741-760. [DOI: 10.1111/mmi.14101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Yaron S. Feldheim
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Anya Kapach
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|
22
|
Giannakopoulou N, Mendis N, Zhu L, Gruenheid S, Faucher SP, Le Moual H. The Virulence Effect of CpxRA in Citrobacter rodentium Is Independent of the Auxiliary Proteins NlpE and CpxP. Front Cell Infect Microbiol 2018; 8:320. [PMID: 30280092 PMCID: PMC6153362 DOI: 10.3389/fcimb.2018.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
Citrobacter rodentium is a murine pathogen used to model the intestinal infection caused by Enteropathogenic and Enterohemorrhagic Escherichia coli (EPEC and EHEC), two diarrheal pathogens responsible for morbidity and mortality in developing and developed countries, respectively. During infection, these bacteria must sense and adapt to the gut environment of the host. In order to adapt to changing environmental cues and modulate expression of specific genes, bacteria can use two-component signal transduction systems (TCS). We have shown that the deletion of the Cpx TCS in C. rodentium leads to a marked attenuation in virulence in C3H/HeJ mice. In E. coli, the Cpx TCS is reportedly activated in response to signals from the outer-membrane lipoprotein NlpE. We therefore investigated the role of NlpE in C. rodentium virulence. We also assessed the role of the reported negative regulator of CpxRA, CpxP. We found that as opposed to the ΔcpxRA strain, neither the ΔnlpE, ΔcpxP nor the ΔnlpEΔcpxP strains were significantly attenuated, and had similar in vivo localization to wild-type C. rodentium. The in vitro adherence of the Cpx auxiliary protein mutants, ΔnlpE, ΔcpxP, ΔnlpEΔcpxP, was comparable to wild-type C. rodentium, whereas the ΔcpxRA strain showed significantly decreased adherence. To further elucidate the mechanisms behind the contrasting virulence phenotypes, we performed microarrays in order to define the regulon of the Cpx TCS. We detected 393 genes differentially regulated in the ΔcpxRA strain. The gene expression profile of the ΔnlpE strain is strikingly different than the profile of ΔcpxRA with regards to the genes activated by CpxRA. Further, there is no clear inverse correlation in the expression pattern of the ΔcpxP strain in comparison to ΔcpxRA. Taken together, these data suggest that in these conditions, CpxRA activates gene expression in a largely NlpE- and CpxP-independent manner. Compared to wildtype, 161 genes were downregulated in the ΔcpxRA strain, while being upregulated or unchanged in the Cpx auxiliary protein deletion strains. This group of genes, which we hypothesize may contribute to the loss of virulence of ΔcpxRA, includes T6SS components, ompF, the regulator for colanic acid synthesis, and several genes involved in maltose metabolism.
Collapse
Affiliation(s)
| | - Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Lei Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Zhai YJ, Huang H, Liu J, Sun HR, He D, Pan YS, Hu G. CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. J Antimicrob Chemother 2018; 73:3016-3024. [DOI: 10.1093/jac/dky320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hui Huang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua-Run Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Beyrakhova K, Li L, Xu C, Gagarinova A, Cygler M. Legionella pneumophila effector Lem4 is a membrane-associated protein tyrosine phosphatase. J Biol Chem 2018; 293:13044-13058. [PMID: 29976756 DOI: 10.1074/jbc.ra118.003845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Indexed: 01/16/2023] Open
Abstract
Legionella pneumophila is a Gram-negative pathogenic bacterium that causes severe pneumonia in humans. It establishes a replicative niche called Legionella-containing vacuole (LCV) that allows bacteria to survive and replicate inside pulmonary macrophages. To hijack host cell defense systems, L. pneumophila injects over 300 effector proteins into the host cell cytosol. The Lem4 effector (lpg1101) consists of two domains: an N-terminal haloacid dehalogenase (HAD) domain with unknown function and a C-terminal phosphatidylinositol 4-phosphate-binding domain that anchors Lem4 to the membrane of early LCVs. Herein, we demonstrate that the HAD domain (Lem4-N) is structurally similar to mouse MDP-1 phosphatase and displays phosphotyrosine phosphatase activity. Substrate specificity of Lem4 was probed using a tyrosine phosphatase substrate set, which contained a selection of 360 phosphopeptides derived from human phosphorylation sites. This assay allowed us to identify a consensus pTyr-containing motif. Based on the localization of Lem4 to lysosomes and to some extent to plasma membrane when expressed in human cells, we hypothesize that this protein is involved in protein-protein interactions with an LCV or plasma membrane-associated tyrosine-phosphorylated host target.
Collapse
Affiliation(s)
- Ksenia Beyrakhova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 and
| | - Lei Li
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 and
| | - Caishuang Xu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 and
| | - Alla Gagarinova
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 and
| | - Miroslaw Cygler
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5 and .,the Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
25
|
Li L, Faucher SP. Role of the LuxR family transcriptional regulator Lpg2524 in the survival of Legionella pneumophila in water. Can J Microbiol 2017; 63:535-545. [PMID: 28264171 DOI: 10.1139/cjm-2016-0780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The water-borne Gram-negative bacterium Legionella pneumophila (Lp) is the causative agent of Legionnaires' disease. Lp is typically transmitted to humans from water systems, where it grows inside amoebae. Survival of Lp in water is central to its transmission to humans. A transcriptomic study previously identified many genes induced by Lp in water. One such gene, lpg2524, encodes a putative LuxR family transcriptional regulator. It was hypothesized that this gene could be involved in the survival of Lp in water. Deletion of lpg2524 does not affect the growth of Lp in rich medium, in the amoeba Acanthamoeba castellanii, or in human macrophage-like THP-1 cells, showing that Lpg2524 is not required for growth in vitro and in vivo. Nevertheless, deletion of lpg2524 results in a faster colony-forming unit (CFU) reduction in an artificial freshwater medium, Fraquil, indicating that Lpg2524 is important for Lp to survive in water. Overexpression of Lpg2524 also results in a survival defect, suggesting that a precise level of this transcriptional regulator is essential for its function. However, our result shows that Lpg2524 is dispensable for survival in water when Lp is at a high cell density (109 CFU/mL), suggesting that its regulon is regulated by another regulator activated at high cell density.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada
| |
Collapse
|
26
|
Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System. J Bacteriol 2017; 199:JB.00690-16. [PMID: 27994017 DOI: 10.1128/jb.00690-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.
Collapse
|
27
|
Hochstrasser R, Hilbi H. Intra-Species and Inter-Kingdom Signaling of Legionella pneumophila. Front Microbiol 2017; 8:79. [PMID: 28217110 PMCID: PMC5289986 DOI: 10.3389/fmicb.2017.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022] Open
Abstract
The ubiquitous Gram-negative bacterium Legionella pneumophila parasitizes environ mental amoebae and, upon inhalation, replicates in alveolar macrophages, thus causing a life-threatening pneumonia called “Legionnaires’ disease.” The opportunistic pathogen employs a bi-phasic life cycle, alternating between a replicative, non-virulent phase and a stationary, transmissive/virulent phase. L. pneumophila employs the Lqs (Legionella quorum sensing) system as a major regulator of the growth phase switch. The Lqs system comprises the autoinducer synthase LqsA, the homologous sensor kinases LqsS and LqsT, as well as a prototypic response regulator termed LqsR. These components produce, detect, and respond to the α-hydroxyketone signaling molecule LAI-1 (Legionella autoinducer-1, 3-hydroxypentadecane-4-one). LAI-1-mediated signal transduction through the sensor kinases converges on LqsR, which dimerizes upon phosphorylation. The Lqs system regulates the bacterial growth phase switch, pathogen-host cell interactions, motility, natural competence, filament production, and expression of a chromosomal “fitness island.” Yet, LAI-1 not only mediates bacterial intra-species signaling, but also modulates the motility of eukaryotic cells through the small GTPase Cdc42 and thus promotes inter-kingdom signaling. Taken together, the low molecular weight compound LAI-1 produced by L. pneumophila and sensed by the bacteria as well as by eukaryotic cells plays a major role in pathogen-host cell interactions.
Collapse
Affiliation(s)
- Ramon Hochstrasser
- Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| | - Hubert Hilbi
- Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|