1
|
Ren Z, Way LE, Wang X. SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo. Sci Rep 2025; 15:2447. [PMID: 39828741 PMCID: PMC11743769 DOI: 10.1038/s41598-025-86946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops. Although SMC complexes are capable of traversing the entire chromosome bound by various NAPs in vivo, it is unclear whether SMC translocation is influenced by NAPs. In this study, using Bacillus subtilis as a model system, we expressed a collection of representative bacterial and archaeal DNA-binding proteins that introduce distinct DNA structures and potentially pose different challenges for SMC movement. By fluorescence microscopy and chromatin immunoprecipitation, we observed that these proteins bound to the genome in characteristic manners. Using genome-wide chromosome conformation capture (Hi-C) assays, we found that the SMC complex traversed these DNA-binding proteins without slowing down. Our findings revealed that the DNA-loop-extruding activity of the SMC complex is unaffected by exogenously expressed DNA-binding proteins, which highlights the robustness of SMC motors on the busy chromatin.
Collapse
Affiliation(s)
- Zhongqing Ren
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lindsey E Way
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Xindan Wang
- Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Dehghani B, Rodrigues CDA. SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of Bacillus subtilis sporulation. J Bacteriol 2024; 206:e0022024. [PMID: 38904397 PMCID: PMC11270862 DOI: 10.1128/jb.00220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using Bacillus subtilis, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.
Collapse
Affiliation(s)
- Behzad Dehghani
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
3
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
4
|
To Feed or to Stick? Genomic Analysis Offers Clues for the Role of a Molecular Machine in Endospore Formers. J Bacteriol 2022; 204:e0018722. [PMID: 35913150 PMCID: PMC9487464 DOI: 10.1128/jb.00187-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sporulation in Firmicutes starts with the formation of two adjacent cells and proceeds with the engulfment of the smaller one, the forespore, by the larger one, the mother cell. This critical step involves a core set of conserved genes, some transcribed in the forespore, such as spoIIQ, and others transcribed in the mother cell, such as the eight-gene spoIIIA operon. A model has been proposed in which the SpoIIIA and the SpoIIQ proteins form a channel connecting the mother cell and the forespore, playing the role of a secretion apparatus allowing the mother cell to nurture the fully engulfed forespore. Exploration of the genomes of Caryophanaceae and Erysipelotrichales has provided informations that are not fully congruent with data from Bacillaceae or Clostridia. The differences observed are correlated with specific physiological features, and alternate, not mutually exclusive views of the function of the SpoIIIA-SpoIIQ complex are presented.
Collapse
|
5
|
Genetic Screens Identify Additional Genes Implicated in Envelope Remodeling during the Engulfment Stage of Bacillus subtilis Sporulation. mBio 2022; 13:e0173222. [PMID: 36066101 PMCID: PMC9600426 DOI: 10.1128/mbio.01732-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria.
Collapse
|
6
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
7
|
Soto-Avila L, Merce RC, Santos W, Castañeda N, Gutierrez-Ríos RM. Distribution and preservation of the components of the engulfment. What is beyond representative genomes? PLoS One 2021; 16:e0246651. [PMID: 33651833 PMCID: PMC7924749 DOI: 10.1371/journal.pone.0246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2021] [Indexed: 12/16/2022] Open
Abstract
Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.
Collapse
Affiliation(s)
- Lizeth Soto-Avila
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ricardo Ciria Merce
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Walter Santos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Nori Castañeda
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Rosa-María Gutierrez-Ríos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
8
|
A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genet 2020; 16:e1009246. [PMID: 33315869 PMCID: PMC7769602 DOI: 10.1371/journal.pgen.1009246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development. Cell shape is an important cellular attribute linked to cellular function and environmental adaptation. Bacterial endospores are one of the toughest cell types on Earth, with a defined shape and complex, highly-resistant, multi-layered cell envelope. Although decades of research have focused on defining the composition and assembly of the multi-layered spore envelope, little is known about how these layers contribute to spore shape. Here, we identify SsdC, a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria. We show that SsdC is an important factor in spore shape development in the monoderm, model organism Bacillus subtilis. Our data suggest that SsdC influences the assembly of the spore cortex, through connections to the spore coat, by forming an intriguing, dynamic ring-like structure adjacent to the developing spore. Furthermore, our identification of SsdC suggests evolutionary diversification of the MucB /RseB protein domain between diderm and monoderm bacteria.
Collapse
|
9
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
10
|
Khanna K, Lopez-Garrido J, Pogliano K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu Rev Microbiol 2020; 74:361-386. [PMID: 32660383 PMCID: PMC7610358 DOI: 10.1146/annurev-micro-022520-074650] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endospore formation in Bacillus subtilis provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in B. subtilis and other spore-forming Firmicutes. We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.
Collapse
Affiliation(s)
- Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| | | | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; ,
| |
Collapse
|
11
|
Parrell D, Kroos L. Channels modestly impact compartment-specific ATP levels during Bacillus subtilis sporulation and a rise in the mother cell ATP level is not necessary for Pro-σ K cleavage. Mol Microbiol 2020; 114:563-581. [PMID: 32515031 DOI: 10.1111/mmi.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
Starvation of Bacillus subtilis initiates endosporulation involving formation of mother cell (MC) and forespore (FS) compartments. During engulfment, the MC membrane migrates around the FS and protein channels connect the two compartments. The channels are necessary for postengulfment FS gene expression, which relieves inhibition of SpoIVFB, an intramembrane protease that cleaves Pro-σK , releasing σK into the MC. SpoIVFB has an ATP-binding domain exposed to the MC cytoplasm, but the role of ATP in regulating Pro-σK cleavage has been unclear, as has the impact of the channels on MC and FS ATP levels. Using luciferase produced separately in each compartment to measure relative ATP concentrations during sporulation, we found that the MC ATP concentration rises about twofold coincident with increasing cleavage of Pro-σK , and the FS ATP concentration does not decline. Mutants lacking a channel protein or defective in channel protein turnover exhibited modest and varied effects on ATP levels, which suggested that low ATP concentration does not explain the lack of postengulfment FS gene expression in channel mutants. Furthermore, a rise in the MC ATP level was not necessary for Pro-σK cleavage by SpoIVFB, based on analysis of mutants that bypass the need for relief of SpoIVFB inhibition.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Abhyankar W, Zheng L, Brul S, de Koster CG, de Koning LJ. Vegetative Cell and Spore Proteomes of Clostridioides difficile Show Finite Differences and Reveal Potential Protein Markers. J Proteome Res 2019; 18:3967-3976. [PMID: 31557040 PMCID: PMC6832669 DOI: 10.1021/acs.jproteome.9b00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/22/2022]
Abstract
Clostridioides difficile-associated infection (CDI) is a health-care-associated infection caused, as the name suggests, by obligate anaerobic pathogen C. difficile and thus mainly transmitted via highly resistant endospores from one person to the other. In vivo, the spores need to germinate into cells prior to establishing an infection. Bile acids and glycine, both available in sufficient amounts inside the human host intestinal tract, serve as efficient germinants for the spores. It is therefore, for better understanding of C. difficile virulence, crucial to study both the cell and spore states with respect to their genetic, metabolic, and proteomic composition. In the present study, mass spectrometric relative protein quantification, based on the 14N/15N peptide isotopic ratios, has led to quantification of over 700 proteins from combined spore and cell samples. The analysis has revealed that the proteome turnover between a vegetative cell and a spore for this organism is moderate. Additionally, specific cell and spore surface proteins, vegetative cell proteins CD1228, CD3301 and spore proteins CD2487, CD2434, and CD0684 are identified as potential protein markers for C. difficile infection.
Collapse
Affiliation(s)
- Wishwas
R. Abhyankar
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Linli Zheng
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department
of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G. de Koster
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J. de Koning
- Department
of Mass Spectrometry of Bio-Macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Faculty
of Science, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress. Appl Environ Microbiol 2019; 85:AEM.01196-19. [PMID: 31375492 DOI: 10.1128/aem.01196-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCE Rhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.
Collapse
|
16
|
Kelly A, Salgado PS. The engulfasome in C. difficile: Variations on protein machineries. Anaerobe 2019; 60:102091. [PMID: 31470088 PMCID: PMC6934232 DOI: 10.1016/j.anaerobe.2019.102091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Clostridioides difficile infection (CDI) continues to be a substantial healthcare burden, and the changing disease profile raises new challenges in CDI management, both in clinical settings and in the community. CDI is transmitted by spores, which are formed by a subset of the cell population where an asymmetric septum is formed. A full copy of the chromosome is transported into the smaller compartment which is then engulfed by the mother cell. After engulfment, multiple metabolic and morphological changes occur, eventually resulting in the release of the mature spore. Whilst studies in the model organism Bacillus subtilis have demonstrated the importance of the DMP and Q:AH machineries in engulfment, it is becoming clear that there are fundamental differences in the way the two organisms organise these machineries. As spores are the infectious agent in CDI, it is crucial to understand how these dormant cells are formed, and how sporulation can be prevented or disrupted with the view of reducing CDI. Here, we review the current literature on the DMP and Q:AH machineries in C. difficile, and how they compare and contrast to those of B. subtilis. Overview of the DMP and Q:AH engulfment machineries in C. difficile. Analyses of the conservation of DMP across Bacilli, Clostridia and other bacteria. Proposes a multi-protein complex required for engulfment: the engulfasome. Highlights differential arrangements of engulfasome in B. subtilis and C. difficile.
Collapse
Affiliation(s)
- Abigail Kelly
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
17
|
Zeytuni N, Strynadka NCJ. A Hybrid Secretion System Facilitates Bacterial Sporulation: A Structural Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0013-2018. [PMID: 30681070 PMCID: PMC11588154 DOI: 10.1128/microbiolspec.psib-0013-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 02/01/2023] Open
Abstract
Bacteria employ a number of dedicated secretion systems to export proteins to the extracellular environment. Several of these comprise large complexes that assemble in and around the bacterial membrane(s) to form specialized channels through which only selected proteins are actively delivered. Although typically associated with bacterial pathogenicity, a specialized variant of these secretion systems has been proposed to play a central part in bacterial sporulation, a primitive protective process that allows starving cells to form spores that survive in extreme environments. Following asymmetric division, the mother cell engulfs the forespore, leaving it surrounded by two bilayer membranes. During the engulfment process an essential channel apparatus is thought to cross both membranes to create a direct conduit between the mother cell and forespore. At least nine proteins are essential for channel formation, including SpoIIQ under forespore control and the eight SpoIIIA proteins (SpoIIIAA to -AH) under mother cell control. Presumed to form a core channel complex, several of these proteins share similarity with components of Gram-negative bacterial secretion systems, including the type II, III, and IV secretion systems and the flagellum. Based on these similarities it has been suggested that the sporulation channel represents a hybrid, secretion-like transport machinery. Recently, in-depth biochemical and structural characterization of the individual channel components accompanied by in vivo studies has further reinforced this model. Here we review and discuss these recent studies and suggest an updated model for the unique sporulation channel apparatus architecture.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
18
|
Ramírez-Guadiana FH, Rodrigues CDA, Marquis KA, Campo N, Barajas-Ornelas RDC, Brock K, Marks DS, Kruse AC, Rudner DZ. Evidence that regulation of intramembrane proteolysis is mediated by substrate gating during sporulation in Bacillus subtilis. PLoS Genet 2018; 14:e1007753. [PMID: 30403663 PMCID: PMC6242693 DOI: 10.1371/journal.pgen.1007753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023] Open
Abstract
During the morphological process of sporulation in Bacillus subtilis two adjacent daughter cells (called the mother cell and forespore) follow different programs of gene expression that are linked to each other by signal transduction pathways. At a late stage in development, a signaling pathway emanating from the forespore triggers the proteolytic activation of the mother cell transcription factor σK. Cleavage of pro-σK to its mature and active form is catalyzed by the intramembrane cleaving metalloprotease SpoIVFB (B), a Site-2 Protease (S2P) family member. B is held inactive by two mother-cell membrane proteins SpoIVFA (A) and BofA. Activation of pro-σK processing requires a site-1 signaling protease SpoIVB (IVB) that is secreted from the forespore into the space between the two cells. IVB cleaves the extracellular domain of A but how this cleavage activates intramembrane proteolysis has remained unclear. Structural studies of the Methanocaldococcus jannaschii S2P homolog identified closed (substrate-occluded) and open (substrate-accessible) conformations of the protease, but the biological relevance of these conformations has not been established. Here, using co-immunoprecipitation and fluorescence microscopy, we show that stable association between the membrane-embedded protease and its substrate requires IVB signaling. We further show that the cytoplasmic cystathionine-β-synthase (CBS) domain of the B protease is not critical for this interaction or for pro-σK processing, suggesting the IVB-dependent interaction site is in the membrane protease domain. Finally, we provide evidence that the B protease domain adopts both open and closed conformations in vivo. Collectively, our data support a substrate-gating model in which IVB-dependent cleavage of A on one side of the membrane triggers a conformational change in the membrane-embedded protease from a closed to an open state allowing pro-σK access to the caged interior of the protease. Regulated Intramembrane Proteolysis is a broadly conserved mechanism for transducing information across lipid bilayers. In these signaling pathways a protease on one side of the membrane triggers the activation of a membrane-embedded protease that cleaves its substrate within or adjacent to the cytoplasmic face of the membrane. Site-2 metalloproteases (S2P) are the most commonly used intramembrane cleaving proteases in these pathways but the mechanism by which cleavage on one side of the membrane triggers intramembrane proteolysis remains poorly understood. Here, we provide evidence for a substrate-gating model in which an extracellular signaling protease triggers a conformational change in a S2P family member from a closed to an open conformation allowing its substrate access to the catalytic center of the enzyme.
Collapse
Affiliation(s)
| | | | - Kathleen A. Marquis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
| | - Nathalie Campo
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
| | | | - Kelly Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA United States of America
- * E-mail:
| |
Collapse
|
19
|
Structural characterization of the sporulation protein GerM from Bacillus subtilis. J Struct Biol 2018; 204:481-490. [PMID: 30266596 DOI: 10.1016/j.jsb.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/28/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis responds to starvation by entering a morphological differentiation process leading to the formation of a highly resistant spore. Early in the sporulation process, the cell asymmetrically divides into a large compartment (the mother cell) and a smaller one (the forespore), which will maturate into a resistant spore. Proper development of the forespore requires the assembly of a multiprotein complex called the SpoIIIA-SpoIIQ complex or "A-Q complex". This complex involves the forespore protein SpoIIQ and eight mother cell proteins (SpoIIIAA to SpoIIIAH), many of which share structural similarities with components of specialized secretion systems and flagella found in Gram-negative bacteria. The assembly of the A-Q complex across the two membranes that separate the mother cell and forespore was recently shown to require GerM. GerM is a lipoprotein composed of two GerMN domains, a family of domains with unknown function. Here, we report X-ray crystallographic structures of the first GerMN domain of GerM at 1.0 Å resolution, and of the soluble domain of GerM (the tandem of GerMN domains) at 2.1 Å resolution. These structures reveal that GerMN domains can adopt distinct conformations and that the core of these domains display structural similarities with ring-building motifs found in components of specialized secretion system and in SpoIIIA proteins. This work provides an additional piece towards the structural characterization of the A-Q complex.
Collapse
|
20
|
The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation. Trends Microbiol 2018; 26:663-676. [DOI: 10.1016/j.tim.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
21
|
Liu Z, He Z, Huang H, Ran X, Oluwafunmilayo AO, Lu Z. pH Stress-Induced Cooperation between Rhodococcus ruber YYL and Bacillus cereus MLY1 in Biodegradation of Tetrahydrofuran. Front Microbiol 2017; 8:2297. [PMID: 29209303 PMCID: PMC5702389 DOI: 10.3389/fmicb.2017.02297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Microbial consortia consisting of cooperational strains exhibit biodegradation performance superior to that of single microbial strains and improved remediation efficiency by relieving the environmental stress. Tetrahydrofuran (THF), a universal solvent widely used in chemical and pharmaceutical synthesis, significantly affects the environment. As a refractory pollutant, THF can be degraded by some microbial strains under suitable conditions. There are often a variety of stresses, especially pH stress, that inhibit the THF-degradation efficiency of microbial consortia. Therefore, it is necessary to study the molecular mechanisms of microbial cooperational degradation of THF. In this study, under conditions of low pH (initial pH = 7.0) stress, a synergistic promotion of the THF degradation capability of the strain Rhodococcus ruber YYL was found in the presence of a non-THF degrading strain Bacillus cereus MLY1. Metatranscriptome analysis revealed that the low pH stress induced the strain YYL to up-regulate the genes involved in anti-oxidation, mutation, steroid and bile acid metabolism, and translation, while simultaneously down-regulating the genes involved in ATP production. In the co-culture system, strain MLY1 provides fatty acids, ATP, and amino acids for strain YYL in response to low pH stress during THF degradation. In return, YYL shares the metabolic intermediates of THF with MLY1 as carbon sources. This study provides the preliminary mechanism to understand how microbial consortia improve the degradation efficiency of refractory furan pollutants under environmental stress conditions.
Collapse
Affiliation(s)
- Zubi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuebin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 2017; 13:e1007015. [PMID: 28945739 PMCID: PMC5629000 DOI: 10.1371/journal.pgen.1007015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022] Open
Abstract
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria. All pathogenic and non-pathogenic bacteria that differentiate into dormant endospores including Clostridium difficile, Bacillus anthracis, and Bacillus subtilis, contain very high concentrations of the small molecule dipicolinic acid (DPA). This molecule displaces water in the spore core where it plays an integral role in spore resistance and dormancy. DPA and its contribution to spore dehydration were discovered in 1953 but the molecular basis for its accumulation in the spore has remained unclear. The developing endospore resides within a mother cell that assembles protective layers around the spore and nurtures it by providing mother-cell-produced molecules. DPA is produced in the mother cell at a late stage in development and then must be translocated across two membranes into the spore core. Here, we report the discovery of the missing DPA transporter, homologs of which are present in virtually all endospore-forming bacteria. Our data provide evidence for a simple two-step transport pathway in which the mother cell nurtures the developing spore by sequentially moving DPA across the two membranes that surround it.
Collapse
Affiliation(s)
| | - Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Andrew C. Kruse
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 2017; 114:E7073-E7081. [PMID: 28784753 DOI: 10.1073/pnas.1704310114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical β-barrel that forms a large inner channel encircled by two concentric rings, one β-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique β-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.
Collapse
|
24
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 2016; 5. [PMID: 27852437 PMCID: PMC5158138 DOI: 10.7554/elife.18657] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.001 Some bacteria, such as Bacillus subtilis, form spores when starved of food, which enables them to lie dormant for years and wait for conditions to improve. To make a spore, the bacterial cell divides to make a larger mother cell and a smaller forespore cell. Then the membrane that surrounds the mother cell moves to surround the forespore and engulf it. For this process to take place, a rigid mesh-like layer called the cell wall, which lies outside the cell membrane, needs to be remodelled. This happens once a partition in the cell wall, called a septum, has formed, separating mother and daughter cells. However, it is not clear how the mother cell can generate the physical force required to engulf the forespore under the cramped conditions imposed by the cell wall. To address this question, Ojkic, López-Garrido et al. used microscopy to investigate how B. subtilis makes spores. The experiments show that, in order to engulf the forespore, the mother cell must produce new cell wall and destroy cell wall that is no longer needed. Running a simple biophysical model on a computer showed that coordinating these two processes could generate enough force for a mother cell to engulf a forespore. Ojkic, López-Garrido et al. propose that the junction between the septum and the cell wall moves around the forespore to make room for the mother cell’s membrane for expansion. Other spore-forming bacteria that threaten human health – such as Clostridium difficile, which causes bowel infections, and Bacillus anthracis, which causes anthrax – might form their spores in the same way, but this remains to be tested. More work will also be needed to understand exactly how bacterial cells coordinate the cell wall synthesis and cell wall degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.002
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|