1
|
Mejia-Santana A, Collins R, Doud EH, Landeta C. Disulfide bonds are required for cell division, cell envelope biogenesis and antibiotic resistance proteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635063. [PMID: 39975046 PMCID: PMC11838256 DOI: 10.1101/2025.01.27.635063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacteria, including Mycobacterium tuberculosis-the etiological agent of tuberculosis-have a unique cell envelope critical for their survival and resistance. The cell envelope's assembly and maintenance influence permeability, making it a key target against multidrug-resistant strains. Disulfide bond (DSB) formation is crucial for the folding of cell envelope proteins. The DSB pathway in mycobacteria includes two enzymes, DsbA and VKOR, required for survival. Using bioinformatics and cysteine profiling proteomics, we identified cell envelope proteins dependent on DSBs. We validated via in vivo alkylation that key proteins like LamA (MmpS3), PstP, LpqW, and EmbB rely on DSBs for stability. Furthermore, chemical inhibition of VKOR results in phenotypes similar to those of Δvkor. Thus, targeting DsbA-VKOR systems could compromise both cell division and mycomembrane integrity. These findings emphasize the potential of DSB inhibition as a novel strategy to combat mycobacterial infections.
Collapse
Affiliation(s)
| | - Rebecca Collins
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| | - Emma H. Doud
- Biochemistry and Molecular Biology. Indiana University School of Medicine. Indianapolis, IN. U.S.A
- Center for Proteome Analysis; Indiana University School of Medicine. Indianapolis, IN. U.S.A
| | - Cristina Landeta
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| |
Collapse
|
2
|
Combs AN, Silhavy TJ. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu Rev Microbiol 2024; 78:191-211. [PMID: 39008906 DOI: 10.1146/annurev-micro-041522-102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
Collapse
Affiliation(s)
- Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
3
|
Méndez AAE, Argüello JM, Soncini FC, Checa SK. Scs system links copper and redox homeostasis in bacterial pathogens. J Biol Chem 2024; 300:105710. [PMID: 38309504 PMCID: PMC10907172 DOI: 10.1016/j.jbc.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The bacterial envelope is an essential compartment involved in metabolism and metabolites transport, virulence, and stress defense. Its roles become more evident when homeostasis is challenged during host-pathogen interactions. In particular, the presence of free radical groups and excess copper in the periplasm causes noxious reactions, such as sulfhydryl group oxidation leading to enzymatic inactivation and protein denaturation. In response to this, canonical and accessory oxidoreductase systems are induced, performing quality control of thiol groups, and therefore contributing to restoring homeostasis and preserving survival under these conditions. Here, we examine recent advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the scsABCD locus and its integration into a global regulatory pathway directing envelope response to Cu stress during the evolution of pathogens that also harbor the canonical Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the extra demands that the host-pathogen interface imposes to preserve functional thiol groups. This resulted in the acquisition of the Scs system by Salmonella. We propose that the ScsABCD complex evolved to connect Cu and redox stress responses in this pathogen as well as in other bacterial pathogens.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.
| |
Collapse
|
4
|
Yahashiri A, Kaus GM, Popham DL, Houtman JCD, Weiss DS. Comparative Study of Bacterial SPOR Domains Identifies Functionally Important Differences in Glycan Binding Affinity. J Bacteriol 2022; 204:e0025222. [PMID: 36005810 PMCID: PMC9487507 DOI: 10.1128/jb.00252-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 μM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 μM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Gabriela M. Kaus
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Stable inheritance of Sinorhizobium meliloti cell growth polarity requires an FtsN-like protein and an amidase. Nat Commun 2021; 12:545. [PMID: 33483499 PMCID: PMC7822825 DOI: 10.1038/s41467-020-20739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In Rhizobiales bacteria, such as Sinorhizobium meliloti, cell elongation takes place only at new cell poles, generated by cell division. Here, we show that the role of the FtsN-like protein RgsS in S. meliloti extends beyond cell division. RgsS contains a conserved SPOR domain known to bind amidase-processed peptidoglycan. This part of RgsS and peptidoglycan amidase AmiC are crucial for reliable selection of the new cell pole as cell elongation zone. Absence of these components increases mobility of RgsS molecules, as well as abnormal RgsS accumulation and positioning of the growth zone at the old cell pole in about one third of the cells. These cells with inverted growth polarity are able to complete the cell cycle but show partially impaired chromosome segregation. We propose that amidase-processed peptidoglycan provides a landmark for RgsS to generate cell polarity in unipolarly growing Rhizobiales. In Sinorhizobium bacteria, cell elongation takes place only at new cell poles, generated by cell division. Here, Krol et al. show that an FtsN-like protein and a peptidoglycan amidase are crucial for reliable selection of the new cell pole as cell elongation zone.
Collapse
|
6
|
Collet JF, Cho SH, Iorga BI, Goemans CV. How the assembly and protection of the bacterial cell envelope depend on cysteine residues. J Biol Chem 2020; 295:11984-11994. [PMID: 32487747 PMCID: PMC7443483 DOI: 10.1074/jbc.rev120.011201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Seung-Hyun Cho
- de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, UCLouvain, Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Yucel B, Robinson GK, Shepherd M. The copper‐responsive ScsC protein of
Salmonella
promotes intramacrophage survival and interacts with the arginine sensor ArtI. FEBS J 2020; 287:3827-3840. [DOI: 10.1111/febs.15285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Buke Yucel
- RAPID Group School of Biosciences University of Kent Canterbury UK
| | - Gary K. Robinson
- RAPID Group School of Biosciences University of Kent Canterbury UK
| | - Mark Shepherd
- RAPID Group School of Biosciences University of Kent Canterbury UK
| |
Collapse
|
8
|
Landeta C, McPartland L, Tran NQ, Meehan BM, Zhang Y, Tanweer Z, Wakabayashi S, Rock J, Kim T, Balasubramanian D, Audette R, Toosky M, Pinkham J, Rubin EJ, Lory S, Pier G, Boyd D, Beckwith J. Inhibition of Pseudomonas aeruginosa and Mycobacterium tuberculosis disulfide bond forming enzymes. Mol Microbiol 2019; 111:918-937. [PMID: 30556355 DOI: 10.1111/mmi.14185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti-virulence agents, resulting in the simultaneous inactivation of several types of virulence factors. Here, we present evidence that the disulfide bond forming enzymes, DsbB and VKOR, are required for Pseudomonas aeruginosa pathogenicity and Mycobacterium tuberculosis survival respectively. We also report the results of a HTS of 216,767 compounds tested against P. aeruginosa DsbB1 and M. tuberculosis VKOR using Escherichia coli cells. Since both P. aeruginosa DsbB1 and M. tuberculosis VKOR complement an E. coli dsbB knockout, we screened simultaneously for inhibitors of each complemented E. coli strain expressing a disulfide-bond sensitive β-galactosidase reported previously. The properties of several inhibitors obtained from these screens suggest they are a starting point for chemical modifications with potential for future antibacterial development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Laura McPartland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Ngoc Q Tran
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Brian M Meehan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Yifan Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Zaidi Tanweer
- Division of Infectious Diseases. Department of Medicine. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shoko Wakabayashi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Jeremy Rock
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Taehyun Kim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rebecca Audette
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Melody Toosky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Jessica Pinkham
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Gerald Pier
- Division of Infectious Diseases. Department of Medicine. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Mu L, Zhou Q, Zhao Y, Liu X, Hu X. Graphene oxide quantum dots stimulate indigenous bacteria to remove oil contamination. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:694-702. [PMID: 30583239 DOI: 10.1016/j.jhazmat.2018.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Oil spills occur frequently worldwide, resulting in severe damage to water and to human health. Polycyclic aromatic hydrocarbons (PAHs) are the primary toxic components in oil contamination. PAH-degrading microbes have attracted significant attention, but difficulty in their selection and proliferation limits their applications. Graphene oxide quantum dots (GOQDs) improve the proliferation of an indigenous PAH-degrading strain, Bacillus cereus, more effectively than large graphene oxide flakes. Bacillus cereus can metabolize a variety of xenobiotic aromatic compounds as carbon sources and is used in bioremediation. GOQDs contain a variety of aromatic hydrocarbon structures, explaining why the bacteria achieve strong tolerance to PAHs. GOQD-activated cytokinesis increases the secretion of substances important for biofilm formation (extracellular polymeric substances), which further accelerates PAH removal. Proteomic analysis reveals the molecular mechanisms underlying GOQD-induced microbial proliferation. GOQDs induce the overexpression of microbial divisomal proteins associated with division initiation, DNA replication and peptidoglycan hydrolysis/synthesis. Importantly, PAH removal mediated by GOQD-treated Bacillus cereus does not require the addition of GOQDs. The effects of GOQDs on a strain persist for at least 20 generations, suggesting their possible use in low-cost applications. This work proposes a strategy to remove oil contamination using an indigenous bacterial system enhanced by nanomaterials.
Collapse
Affiliation(s)
- Li Mu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture), Tianjin Key Laboratory of Agro-Environment and Safe-Product, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture), Tianjin Key Laboratory of Agro-Environment and Safe-Product, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture), Tianjin Key Laboratory of Agro-Environment and Safe-Product, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
11
|
Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. J Bacteriol 2018; 200:JB.00137-18. [PMID: 29784887 DOI: 10.1128/jb.00137-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Disulfide bonds influence the stability and activity of many proteins. In Escherichia coli, the DsbA and DsbB enzymes promote disulfide bond formation. Other bacteria, including the Actinobacteria, use instead of DsbB the enzyme vitamin K epoxide reductase (VKOR), whose gene is found either fused to or in the same operon as a dsbA-like gene. Mycobacterium tuberculosis and other Gram-positive actinobacteria secrete many proteins with even numbers of cysteines to the cell envelope. These organisms have predicted oxidoreductases and VKOR orthologs. These findings indicate that such bacteria likely form disulfide bonds in the cell envelope. The M. tuberculosisvkor gene complements an E. colidsbB deletion strain, restoring the oxidation of E. coli DsbA. While we have suggested that the dsbA gene linked to the vkor gene may express VKOR's partner in mycobacteria, others have suggested that two other extracytoplasmic oxidoreductases (DsbE or DsbF) may be catalysts of protein disulfide bond formation. However, there is no direct evidence for interactions of VKOR with either DsbA, DsbE, or DsbF. To identify the actual substrate of VKOR, we identified two additional predicted extracytoplasmic DsbA-like proteins using bioinformatics analysis of the M. tuberculosis genome. Using the five potential DsbAs, we attempted to reconstitute disulfide bond pathways in E. coli and in Mycobacterium smegmatis, a close relative of M. tuberculosis Our results show that only M. tuberculosis DsbA is oxidized by VKOR. Comparison of the properties of dsbA- and vkor-null mutants in M. smegmatis shows parallels to the properties of dsb mutations in E. coliIMPORTANCE Disulfide bond formation has a great impact on bacterial pathogenicity. Thus, disulfide-bond-forming proteins represent new targets for the development of antibacterials, since the inhibition of disulfide bond formation would result in the simultaneous loss of the activity of several classes of virulence factors. Here, we identified five candidate proteins encoded by the M. tuberculosis genome as possible substrates of the M. tuberculosis VKOR protein involved in disulfide bond formation. We then reconstituted the mycobacterial disulfide bond formation pathway in E. coli and showed that of the five candidates, only M. tuberculosis DsbA is efficiently oxidized by VKOR in E. coli We also present evidence for the involvement of VKOR in DsbA oxidation in M. smegmatis.
Collapse
|
12
|
Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nat Microbiol 2018; 3:270-280. [PMID: 29463925 DOI: 10.1038/s41564-017-0106-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Onder O, Verissimo AF, Khalfaoui-Hassani B, Peters A, Koch HG, Daldal F. Absence of Thiol-Disulfide Oxidoreductase DsbA Impairs cbb3-Type Cytochrome c Oxidase Biogenesis in Rhodobacter capsulatus. Front Microbiol 2017; 8:2576. [PMID: 29312253 PMCID: PMC5742617 DOI: 10.3389/fmicb.2017.02576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The thiol-disulfide oxidoreductase DsbA carries out oxidative folding of extra-cytoplasmic proteins by catalyzing the formation of intramolecular disulfide bonds. It has an important role in various cellular functions, including cell division. The purple non-sulfur bacterium Rhodobacter capsulatus mutants lacking DsbA show severe temperature-sensitive and medium-dependent respiratory growth defects. In the presence of oxygen, at normal growth temperature (35°C), DsbA− mutants form colonies on minimal medium, but they do not grow on enriched medium where cells elongate and lyse. At lower temperatures (i.e., 25°C), cells lacking DsbA grow normally in both minimum and enriched media, however, they do not produce the cbb3-type cytochrome c oxidase (cbb3-Cox) on enriched medium. Availability of chemical oxidants (e.g., Cu2+ or a mixture of cysteine and cystine) in the medium becomes critical for growth and cbb3-Cox production in the absence of DsbA. Indeed, addition of Cu2+ to the enriched medium suppresses, and conversely, omission of Cu2+ from the minimal medium induces, growth and cbb3-Cox defects. Alleviation of these defects by addition of redox-active chemicals indicates that absence of DsbA perturbs cellular redox homeostasis required for the production of an active cbb3-Cox, especially in enriched medium where bioavailable Cu2+ is scarce. This is the first report describing that DsbA activity is required for full respiratory capability of R. capsulatus, and in particular, for proper biogenesis of its cbb3-Cox. We propose that absence of DsbA, besides impairing the maturation of the c-type cytochrome subunits, also affects the incorporation of Cu into the catalytic subunit of cbb3-Cox. Defective high affinity Cu acquisition pathway, which includes the MFS-type Cu importer CcoA, and lower production of the c-type cytochrome subunits lead together to improper assembly and degradation of cbb3-Cox.
Collapse
Affiliation(s)
- Ozlem Onder
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Annette Peters
- Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Meehan BM, Landeta C, Boyd D, Beckwith J. The Disulfide Bond Formation Pathway Is Essential for Anaerobic Growth of Escherichia coli. J Bacteriol 2017; 199:e00120-17. [PMID: 28559299 PMCID: PMC5527382 DOI: 10.1128/jb.00120-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/17/2017] [Indexed: 01/24/2023] Open
Abstract
Disulfide bonds are critical to the stability and function of many bacterial proteins. In the periplasm of Escherichia coli, intramolecular disulfide bond formation is catalyzed by the two-component disulfide bond forming (DSB) system. Inactivation of the DSB pathway has been shown to lead to a number of pleotropic effects, although cells remain viable under standard laboratory conditions. However, we show here that dsb strains of E. coli reversibly filament under aerobic conditions and fail to grow anaerobically unless a strong oxidant is provided in the growth medium. These findings demonstrate that the background disulfide bond formation necessary to maintain the viability of dsb strains is oxygen dependent. LptD, a key component of the lipopolysaccharide transport system, fails to fold properly in dsb strains exposed to anaerobic conditions, suggesting that these mutants may have defects in outer membrane assembly. We also show that anaerobic growth of dsb mutants can be restored by suppressor mutations in the disulfide bond isomerization system. Overall, our results underscore the importance of proper disulfide bond formation to pathways critical to E. coli viability under conditions where oxygen is limited.IMPORTANCE While the disulfide bond formation (DSB) system of E. coli has been studied for decades and has been shown to play an important role in the proper folding of many proteins, including some associated with virulence, it was considered dispensable for growth under most laboratory conditions. This work represents the first attempt to study the effects of the DSB system under strictly anaerobic conditions, simulating the environment encountered by pathogenic E. coli strains in the human intestinal tract. By demonstrating that the DSB system is essential for growth under such conditions, this work suggests that compounds inhibiting Dsb enzymes might act not only as antivirulents but also as true antibiotics.
Collapse
Affiliation(s)
- Brian M Meehan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division. J Bacteriol 2017; 199:JB.00118-17. [PMID: 28396350 DOI: 10.1128/jb.00118-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites.
Collapse
|
16
|
Landeta C, Meehan BM, McPartland L, Ingendahl L, Hatahet F, Tran NQ, Boyd D, Beckwith J. Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions. J Biol Chem 2017; 292:6529-6541. [PMID: 28232484 DOI: 10.1074/jbc.m116.770891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/09/2017] [Indexed: 01/30/2023] Open
Abstract
Disulfide bonds contribute to protein stability, activity, and folding in a variety of proteins, including many involved in bacterial virulence such as toxins, adhesins, flagella, and pili, among others. Therefore, inhibitors of disulfide bond formation enzymes could have profound effects on pathogen virulence. In the Escherichia coli disulfide bond formation pathway, the periplasmic protein DsbA introduces disulfide bonds into substrates, and then the cytoplasmic membrane protein DsbB reoxidizes DsbA's cysteines regenerating its activity. Thus, DsbB generates a protein disulfide bond de novo by transferring electrons to the quinone pool. We previously identified an effective pyridazinone-related inhibitor of DsbB enzymes from several Gram-negative bacteria. To map the protein residues that are important for the interaction with this inhibitor, we randomly mutagenized by error-prone PCR the E. coli dsbB gene and selected dsbB mutants that confer resistance to this drug using two approaches. We characterized in vivo and in vitro some of these mutants that map to two areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring binds and the other located in the second periplasmic loop of DsbB, which interacts with DsbA. In addition, we show that a mutant version of a protein involved in lipopolysaccharide assembly, lptD4213, is synthetically lethal with the deletion of dsbB as well as with DsbB inhibitors. This finding suggests that drugs decreasing LptD assembly may be synthetically lethal with inhibitors of the Dsb pathway, potentiating the antibiotic effects.
Collapse
Affiliation(s)
- Cristina Landeta
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Brian M Meehan
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura McPartland
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Linda Ingendahl
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feras Hatahet
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Ngoc Q Tran
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Boyd
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jon Beckwith
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|