1
|
Williams SA, Riley DM, Rockwood TP, Crosby DA, Call KD, LeCuyer JJ, Santangelo TJ. A dynamic protein interactome drives energy conservation and electron flux in Thermococcus kodakarensis. Appl Environ Microbiol 2025; 91:e0029325. [PMID: 40178256 PMCID: PMC12016516 DOI: 10.1128/aem.00293-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Life is supported by energy gains fueled by catabolism of a wide range of substrates, each reliant on the selective partitioning of electrons through redox (reduction and oxidation) reactions. Electron flux through tunable and regulated protein interactions provides dynamic routes for energy conservation, but how electron flux is regulated in vivo, particularly for archaeal metabolisms that support rapid growth at the thermodynamic limits of life, is poorly understood. Identification of bona fide in vivo protein assemblies and how such assemblies dictate the totality of electron flux is critical to our understanding of the regulation imposed on metabolism, energy production, and energy conservation. Here, 25 key proteins in central metabolic redox pathways in the model, genetically accessible, hyperthermophilic archaeon Thermococcus kodakarensis, were purified to reveal an extensive, dynamic, and tightly interconnected network of protein interactions that responds to environmental cues (such as the availability of various reductive sinks) to direct electron flux to maximize energetic gains. Interactions connecting disparate functions suggest many catabolic and anabolic activities occur in spatial proximity in vivo, and while protein complexes have been historically defined under optimal conditions, many of these complexes appear to maintain alternative partnerships in changing conditions. The totality of the results obtained redefines our understanding of in vivo assemblies driving ancient metabolic strategies supporting the growth of modern Archaea.IMPORTANCEGiven the potential for rational genetic manipulations of biofuel- and biotech-promising archaea to yield transformative results for major markets, it is a priority to define how the metabolisms of such species are controlled, at least in part, by in vivo protein assemblies, and from such, define routes of energy flux that can be most efficiently altered toward biofuel or biotechnological gains. Proteinaceous electron carriers (PECs, such as ferredoxins) offer the potential for specific protein-protein interactions to coordinate selective reductive flow. Employing the model, genetically accessible, hyperthermophilic archaeon, Thermococcus kodakarensis, we establish the metabolic protein interactome of 25 key redox proteins, revealing that each redox active protein has a dynamic partnership profile, suggesting catabolic and anabolic activities may occur in concert and in temporal and spatial proximity in vivo. These results reveal critical importance in evaluating the newly identified partnerships and their role and utility in providing regulated redox flux in T. kodakarensis.
Collapse
Affiliation(s)
- Sere A. Williams
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Danielle M. Riley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Teagan P. Rockwood
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David A. Crosby
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Katherine D. Call
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Jared J. LeCuyer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas J. Santangelo
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Sistu H, Holden JF. Formate addition enhanced hydrogen production by Thermococcus paralvinellae when grown on brewery wastewater. Front Microbiol 2025; 16:1560780. [PMID: 40170917 PMCID: PMC11959275 DOI: 10.3389/fmicb.2025.1560780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
The hyperthermophilic archaeon Thermococcus paralvinellae produces H2 when grown on carbohydrates or protein with increased H2 production when cultures are grown on formate. This study examined the use of brewery wastewater as a feedstock for H2 production, the addition of formate to enhance H2 production, and the activities of hydrogenases and formate hydrogenlyase under varying growth conditions as markers of performance. T. paralvinellae was grown at 80°C on maltose only (a model brewery wastewater), formate only, and maltose plus formate media as well as brewery wastewater with and without the addition of formate. Growth rates were higher on formate only medium than on maltose only and brewery wastewater only media. H2 yield per cell was higher in all media containing formate relative to those without formate. Hydrogenase and formate hydrogenlyase specific activities were not affected by the presence of formate and were largely consistent across all growth conditions. Growth rates were consistent in media containing 0.05 to 2.5% (wt/vol) maltose only, but total H2 production doubled from medium containing 0.05% maltose to 0.5% maltose and remained unchanged at higher maltose concentrations. Cells grown in a 2 L N2 flushed batch bioreactor at 80°C on brewery wastewater with and without formate showed no difference in growth rates but the amount of H2 in the headspace was six times higher when formate was present. However, the amount of H2 produced by cells grown on brewery wastewater plus formate peaked in mid-logarithmic growth phase and then decreased to amounts produced by cells without formate addition by late logarithmic growth phase. When the bioreactor was run as a chemostat, the addition of formate to brewery wastewater led to a 12-fold increase in the amount of H2 present in the headspace that was sustained over time relative to growth without formate addition. Therefore, T. paralvinellae grows on brewery wastewater as its sole source of organic carbon and produces biohydrogen at a steady rate in a pilot-scale bioreactor, and H2 production is enhanced by formate addition.
Collapse
Affiliation(s)
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
3
|
Grünberger F, Schmid G, El Ahmad Z, Fenk M, Vogl K, Reichelt R, Hausner W, Urlaub H, Lenz C, Grohmann D. Uncovering the temporal dynamics and regulatory networks of thermal stress response in a hyperthermophile using transcriptomics and proteomics. mBio 2023; 14:e0217423. [PMID: 37843364 PMCID: PMC10746257 DOI: 10.1128/mbio.02174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Extreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Fenk
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Katharina Vogl
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Leng H, Wang Y, Zhao W, Sievert SM, Xiao X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat Commun 2023; 14:4354. [PMID: 37468486 DOI: 10.1038/s41467-023-39960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
6
|
Zhao W, Zhong B, Zheng L, Tan P, Wang Y, Leng H, de Souza N, Liu Z, Hong L, Xiao X. Proteome-wide 3D structure prediction provides insights into the ancestral metabolism of ancient archaea and bacteria. Nat Commun 2022; 13:7861. [PMID: 36543797 PMCID: PMC9772386 DOI: 10.1038/s41467-022-35523-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Ancestral metabolism has remained controversial due to a lack of evidence beyond sequence-based reconstructions. Although prebiotic chemists have provided hints that metabolism might originate from non-enzymatic protometabolic pathways, gaps between ancestral reconstruction and prebiotic processes mean there is much that is still unknown. Here, we apply proteome-wide 3D structure predictions and comparisons to investigate ancestorial metabolism of ancient bacteria and archaea, to provide information beyond sequence as a bridge to the prebiotic processes. We compare representative bacterial and archaeal strains, which reveal surprisingly similar physiological and metabolic characteristics via microbiological and biophysical experiments. Pairwise comparison of protein structures identify the conserved metabolic modules in bacteria and archaea, despite interference from overly variable sequences. The conserved modules (for example, middle of glycolysis, partial TCA, proton/sulfur respiration, building block biosynthesis) constitute the basic functions that possibly existed in the archaeal-bacterial common ancestor, which are remarkably consistent with the experimentally confirmed protometabolic pathways. These structure-based findings provide a new perspective to reconstructing the ancestral metabolism and understanding its origin, which suggests high-throughput protein 3D structure prediction is a promising approach, deserving broader application in future ancestral exploration.
Collapse
Affiliation(s)
- Weishu Zhao
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Lirong Zheng
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Pan Tan
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hao Leng
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Nicolas de Souza
- Australian Nuclear Science and Technology (ANSTO), Locked Bag 2001, Kirrawee DC, Sydney, NSW, 2232, Australia
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, 200240, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, 200232, Shanghai, China
- School of Physics and Astronomy, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Liang Hong
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Shanghai Artificial Intelligence Laboratory, 200232, Shanghai, China.
- School of Physics and Astronomy, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, International Center for Deep Life Investigation (IC-DLI), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
7
|
Abstract
Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea.
Collapse
|
8
|
Le Guellec S, Leroy E, Courtine D, Godfroy A, Roussel EG. H 2-dependent formate production by hyperthermophilic Thermococcales: an alternative to sulfur reduction for reducing-equivalents disposal. THE ISME JOURNAL 2021; 15:3423-3436. [PMID: 34088977 PMCID: PMC8630068 DOI: 10.1038/s41396-021-01020-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Removal of reducing equivalents is an essential catabolic process for all microorganisms to maintain their internal redox balance. The electron disposal by chemoorganotrophic Thermococcales generates H2 by proton reduction or H2S in presence of S0. Although in the absence of S0 growth of these (hyper)thermopiles was previously described to be H2-limited, it remains unclear how Thermococcales could be present in H2-rich S0-depleted habitats. Here, we report that 12 of the 47 strains tested, distributed among all three orders of Thermococcales, could grow without S0 at 0.8 mM dissolved H2 and that tolerance to H2 was always associated with formate production. Two conserved gene clusters coding for a formate hydrogenlyase (FHL) and a putative formate dehydrogenase-NAD(P)H-oxidoreductase were only present in H2-dependent formate producers, and were both systematically associated with a formate dehydrogenase and a formate transporter. As the reaction involved in this alternative pathway for disposal of reducing equivalents was close to thermodynamic equilibrium, it was strongly controlled by the substrates-products concentration ratio even in the presence of S0. Moreover, experimental data and thermodynamic modelling also demonstrated that H2-dependent CO2 reduction to formate could occur within a large temperature range in contrasted hydrothermal systems, suggesting it could also provide an adaptive advantage.
Collapse
Affiliation(s)
- Sébastien Le Guellec
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Elodie Leroy
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Damien Courtine
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Anne Godfroy
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Erwan G. Roussel
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| |
Collapse
|
9
|
Moalic Y, Hartunians J, Dalmasso C, Courtine D, Georges M, Oger P, Shao Z, Jebbar M, Alain K. The Piezo-Hyperthermophilic Archaeon Thermococcus piezophilus Regulates Its Energy Efficiency System to Cope With Large Hydrostatic Pressure Variations. Front Microbiol 2021; 12:730231. [PMID: 34803948 PMCID: PMC8595942 DOI: 10.3389/fmicb.2021.730231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Deep-sea ecosystems share a common physical parameter, namely high hydrostatic pressure (HHP). Some of the microorganisms isolated at great depths have a high physiological plasticity to face pressure variations. The adaptive strategies by which deep-sea microorganisms cope with HHP variations remain to be elucidated, especially considering the extent of their biotopes on Earth. Herein, we investigated the gene expression patterns of Thermococcus piezophilus, a piezohyperthermophilic archaeon isolated from the deepest hydrothermal vent known to date, under sub-optimal, optimal and supra-optimal pressures (0.1, 50, and 90 MPa, respectively). At stressful pressures [sub-optimal (0.1 MPa) and supra-optimal (90 MPa) conditions], no classical stress response was observed. Instead, we observed an unexpected transcriptional modulation of more than a hundred gene clusters, under the putative control of the master transcriptional regulator SurR, some of which are described as being involved in energy metabolism. This suggests a fine-tuning effect of HHP on the SurR regulon. Pressure could act on gene regulation, in addition to modulating their expression.
Collapse
Affiliation(s)
- Yann Moalic
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Jordan Hartunians
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Cécile Dalmasso
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Myriam Georges
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Philippe Oger
- Université de Lyon, INSA Lyon, CNRS UMR 5240, Villeurbanne, France
| | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France.,Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| |
Collapse
|
10
|
Courtine D, Vince E, Maignien L, Philippon X, Gayet N, Shao Z, Alain K. Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2021; 71. [PMID: 34236955 DOI: 10.1099/ijsem.0.004853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A coccoid-shaped, strictly anaerobic, hyperthermophilic and piezophilic organoheterotrophic archaeon, strain Iri35cT, was isolated from a hydrothermal chimney rock sample collected at a depth of 2300 m at the Mid-Atlantic Ridge (Rainbow vent field). Cells of strain Iri35cT grew at NaCl concentrations ranging from 1-5 % (w/v) (optimum 2.0 %), from pH 5.0 to 9.0 (optimum 7.0-7.5), at temperatures between 50 and 90 °C (optimum 75-80 °C) and at pressures from 0.1 to at least 50 MPa (optimum: 10-30 MPa). The novel isolate grew on complex organic substrates, such as yeast extract, tryptone, peptone or beef extract, preferentially in the presence of elemental sulphur or l-cystine; however, these molecules were not necessary for growth. Its genomic DNA G+C content was 54.63 mol%. The genome has been annotated and the metabolic predictions are in accordance with the metabolic characteristics of the strain and of Thermococcales in general. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain Iri35cT belongs to the genus Thermococcus, and is closer to the species T. celericrescens and T. siculi. Average nucleotide identity scores and in silico DNA-DNA hybridization values between the genome of strain Iri35cT and the genomes of the type species of the genus Thermococcus were below the species delineation threshold. Therefore, and considering the phenotypic data presented, strain Iri35cT is suggested to represent a novel species, for which the name Thermococcus camini sp. nov. is proposed, with the type strain Iri35cT (=UBOCC M-2026T=DSM 111003T).
Collapse
Affiliation(s)
- Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Erwann Vince
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Xavier Philippon
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | | | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| |
Collapse
|
11
|
Zhang K, Zhao W, Rodionov DA, Rubinstein GM, Nguyen DN, Tanwee TNN, Crosby J, Bing RG, Kelly RM, Adams MWW, Zhang Y. Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. mSystems 2021; 6:e0135120. [PMID: 34060912 PMCID: PMC8269263 DOI: 10.1128/msystems.01351-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Metabolic modeling was used to examine potential bottlenecks that could be encountered for metabolic engineering of the cellulolytic extreme thermophile Caldicellulosiruptor bescii to produce bio-based chemicals from plant biomass. The model utilizes subsystems-based genome annotation, targeted reconstruction of carbohydrate utilization pathways, and biochemical and physiological experimental validations. Specifically, carbohydrate transport and utilization pathways involving 160 genes and their corresponding functions were incorporated, representing the utilization of C5/C6 monosaccharides, disaccharides, and polysaccharides such as cellulose and xylan. To illustrate its utility, the model predicted that optimal production from biomass-based sugars of the model product, ethanol, was driven by ATP production, redox balancing, and proton translocation, mediated through the interplay of an ATP synthase, a membrane-bound hydrogenase, a bifurcating hydrogenase, and a bifurcating NAD- and NADP-dependent oxidoreductase. These mechanistic insights guided the design and optimization of new engineering strategies for product optimization, which were subsequently tested in the C. bescii model, showing a nearly 2-fold increase in ethanol yields. The C. bescii model provides a useful platform for investigating the potential redox controls that mediate the carbon and energy flows in metabolism and sets the stage for future design of engineering strategies aiming at optimizing the production of ethanol and other bio-based chemicals. IMPORTANCE The extremely thermophilic cellulolytic bacterium, Caldicellulosiruptor bescii, degrades plant biomass at high temperatures without any pretreatments and can serve as a strategic platform for industrial applications. The metabolic engineering of C. bescii, however, faces potential bottlenecks in bio-based chemical productions. By simulating the optimal ethanol production, a complex interplay between redox balancing and the carbon and energy flow was revealed using a C. bescii genome-scale metabolic model. New engineering strategies were designed based on an improved mechanistic understanding of the C. bescii metabolism, and the new designs were modeled under different genetic backgrounds to identify optimal strategies. The C. bescii model provided useful insights into the metabolic controls of this organism thereby opening up prospects for optimizing production of a wide range of bio-based chemicals.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dmitry A. Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Diep N. Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - James Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
12
|
Vali SW, Haja DK, Brand RA, Adams MWW, Lindahl PA. The Pyrococcus furiosus ironome is dominated by [Fe 4S 4] 2+ clusters or thioferrate-like iron depending on the availability of elemental sulfur. J Biol Chem 2021; 296:100710. [PMID: 33930466 PMCID: PMC8219758 DOI: 10.1016/j.jbc.2021.100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
Pyrococcus furiosus is a hyperthermophilic anaerobic archaeon whose metabolism depends on whether elemental sulfur is (+S0) or is not (-S0) included in growth medium. Under +S0 conditions, expression of respiratory hydrogenase declines while respiratory membrane-bound sulfane reductase and the putative iron-storage protein IssA increase. Our objective was to investigate the iron content of WT and ΔIssA cells under these growth conditions using Mössbauer spectroscopy. WT-S0 cells contained ∼1 mM Fe, with ∼85% present as two spectroscopically distinct forms of S = 0 [Fe4S4]2+ clusters; the remainder was mainly high-spin FeII. WT+S0 cells contained 5 to 9 mM Fe, with 75 to 90% present as magnetically ordered thioferrate-like (TFL) iron nanoparticles. TFL iron was similar to chemically defined thioferrates; both consisted of FeIII ions coordinated by an S4 environment, and both exhibited strong coupling between particles causing high applied fields to have little spectral effect. At high temperatures with magnetic hyperfine interactions abolished, TFL iron exhibited two doublets overlapping those of [Fe4S4]2+ clusters in -S0 cells. This coincidence arose because of similar coordination environments of TFL iron and cluster iron. The TFL structure was more heterogeneous in the presence of IssA. Presented data suggest that IssA may coordinate insoluble iron sulfides as TFL iron, formed as a byproduct of anaerobic sulfur respiration under high iron conditions, which thereby reduces its toxicity to the cell. This was the first Mössbauer characterization of the ironome of an archaeon, and it illustrates differences relative to the iron content of better-studied bacteria such as Escherichia coli.
Collapse
Affiliation(s)
- Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Richard A Brand
- Faculty of Physics, University of Duisburg-Essen, Duisburg, Germany; Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; Department of Chemistry, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
13
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
14
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
15
|
Conserved principles of transcriptional networks controlling metabolic flexibility in archaea. Emerg Top Life Sci 2018; 2:659-669. [PMID: 33525832 PMCID: PMC7289023 DOI: 10.1042/etls20180036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Gene regulation is intimately connected with metabolism, enabling the appropriate timing and tuning of biochemical pathways to substrate availability. In microorganisms, such as archaea and bacteria, transcription factors (TFs) often directly sense external cues such as nutrient substrates, metabolic intermediates, or redox status to regulate gene expression. Intense recent interest has characterized the functions of a large number of such regulatory TFs in archaea, which regulate a diverse array of unique archaeal metabolic capabilities. However, it remains unclear how the co-ordinated activity of the interconnected metabolic and transcription networks produces the dynamic flexibility so frequently observed in archaeal cells as they respond to energy limitation and intermittent substrate availability. In this review, we communicate the current state of the art regarding these archaeal networks and their dynamic properties. We compare the topology of these archaeal networks to those known for bacteria to highlight conserved and unique aspects. We present a new computational model for an exemplar archaeal network, aiming to lay the groundwork toward understanding general principles that unify the dynamic function of integrated metabolic-transcription networks across archaea and bacteria.
Collapse
|
16
|
Jelen B, Giovannelli D, Falkowski PG, Vetriani C. Elemental sulfur reduction in the deep‐sea vent thermophile,
Thermovibrio ammonificans. Environ Microbiol 2018; 20:2301-2316. [DOI: 10.1111/1462-2920.14280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Benjamin Jelen
- Environmental Biophysics and Molecular Ecology Program Rutgers University, New Brunswick New Brunswick NJ 08901 USA
| | - Donato Giovannelli
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Institute of Marine Science National Research Council Ancona 60125 Italy
- Earth‐Life Science Institute Tokyo Institute of Technology Tokyo 152‐8550 Japan
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program Rutgers University, New Brunswick New Brunswick NJ 08901 USA
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Department of Earth and Planetary Sciences Rutgers University New Brunswick NJ 08854 USA
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences Rutgers University New Brunswick NJ 08901 USA
- Department of Biochemistry and Microbiology Rutgers University New Brunswick NJ 08901 USA
| |
Collapse
|
17
|
Nguyen DMN, Schut GJ, Zadvornyy OA, Tokmina-Lukaszewska M, Poudel S, Lipscomb GL, Adams LA, Dinsmore JT, Nixon WJ, Boyd ES, Bothner B, Peters JW, Adams MWW. Two functionally distinct NADP +-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus. J Biol Chem 2017; 292:14603-14616. [PMID: 28705933 DOI: 10.1074/jbc.m117.794172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.
Collapse
Affiliation(s)
- Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Oleg A Zadvornyy
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | | | - Saroj Poudel
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Leslie A Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jessica T Dinsmore
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William J Nixon
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Eric S Boyd
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | | | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
18
|
Gene regulation of two ferredoxin:NADP + oxidoreductases by the redox-responsive regulator SurR in Thermococcus kodakarensis. Extremophiles 2017; 21:903-917. [PMID: 28688056 DOI: 10.1007/s00792-017-0952-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/02/2017] [Indexed: 01/21/2023]
Abstract
The redox-responsive regulator SurR in the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus kodakarensis binds to the SurR-binding consensus sequence (SBS) by responding to the presence of elemental sulfur. Here we constructed a surR gene disruption strain (DTS) in T. kodakarensis, and identified the genes that were under SurR control by comparing the transcriptomes of DTS and parent strains. Among these genes, transcript levels of ferredoxin:NADP+ oxidoreductases 1 and 2 (FNOR1 and FNOR2) genes displayed opposite responses to surR deletion, indicating that SurR repressed FNOR1 transcription while enhancing FNOR2 transcription. Each promoter region contains an SBS upstream (uSBS) and downstream (dSBS) of TATA. In addition to in vitro binding assays, we examined the roles of each SBS in vivo. In FNOR1, mutations in either one of the SBSs resulted in a complete loss of repression, indicating that the presence of both SBSs was essential for repression. In FNOR2, uSBS indeed functioned to enhance gene expression, whereas dSBS functioned in gene repression. SurR bound to uSBS2 of FNOR2 more efficiently than to dSBS2 in vitro, which may explain why SurR overall enhances FNOR2 transcription. Further analyses indicated the importance in the distance between uSBS and TATA for transcriptional activation in FNOR2.
Collapse
|