1
|
Pham HG, Tran KN, Gomelsky L, Roy T, Gigley JP, Gomelsky M. Robust Inducible Gene Expression in Intracellular Listeria monocytogenes In Vivo. ACS Synth Biol 2025; 14:1397-1404. [PMID: 40277175 DOI: 10.1021/acssynbio.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Attenuated strains of the intracellular pathogen Listeria monocytogenes can deliver genetically encoded payloads inside tumor cells. L. monocytogenes preferentially accumulates and propagates in immune-suppressed tumor microenvironments. To maximize the payload impact in tumors and minimize damage to healthy tissues, it is desirable to induce payload synthesis when bacteria are eliminated from the healthy tissues but are grown to high numbers intratumorally. Here, we have engineered a tightly controlled gene expression system for intracellular L. monocytogenes inducible with a cumin derivative, cumate. Upon cumate addition, expression of a reporter gene is increased in L. monocytogenes growing in vitro by 80-fold and in intracellular L. monocytogenes in murine tumors by 75-fold. This study demonstrates the feasibility of activating gene expression in intracellular bacteria in live animals using an edible inducer. The system is expected to enhance the efficacy and safety of the attenuated L. monocytogenes strains as antitumor payload delivery bacterial drones.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kiet N Tran
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Tathagato Roy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
2
|
Bertram R, Neumann B, Schuster CF. Status quo of tet regulation in bacteria. Microb Biotechnol 2022; 15:1101-1119. [PMID: 34713957 PMCID: PMC8966031 DOI: 10.1111/1751-7915.13926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022] Open
Abstract
The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria.
Collapse
Affiliation(s)
- Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Bernd Neumann
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Christopher F. Schuster
- Department of Infectious DiseasesDivision of Nosocomial Pathogens and Antibiotic ResistancesRobert Koch InstituteBurgstraße 37Wernigerode38855Germany
| |
Collapse
|
3
|
Chitboonthavisuk C, Luo CH, Huss P, Fernholz M, Raman S. Engineering a Dynamic Controllable Infectivity Switch in Bacteriophage T7. ACS Synth Biol 2022; 11:286-296. [PMID: 34985866 PMCID: PMC9059553 DOI: 10.1021/acssynbio.1c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcriptional repressors play an important role in regulating phage life cycle. Here, we examine how synthetic transcription repressors can be used in bacteriophage T7 to create a dynamic, controllable infectivity switch. We engineered T7 phage by replacing a large region of the early phage genome with different combinations of ligand-responsive promoters and ribosome binding sites (RBS) designed to control the phage RNA polymerase, gp1. Phages with engineered infectivity switch are fully viable at levels comparable to wildtype T7, when not repressed, indicating the phage can be engineered without loss of fitness. The most effective switch used a TetR-responsive promoter and an attenuated RBS, resulting in a 2-fold increase in latent period and a 10-fold decrease in phage titer when repressed. Phage activity can be further tuned using different inducer concentrations. Our study provides a proof of concept for how a simple synthetic circuit introduced into the phage genome enables user control over phage infectivity.
Collapse
Affiliation(s)
- Chutikarn Chitboonthavisuk
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Chun Huai Luo
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Phil Huss
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Mikayla Fernholz
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Srivatsan Raman
- Dept. of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Bacteriology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
- Dept. of Chemical & Biological Eng., Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Schulte M, Sterzenbach T, Miskiewicz K, Elpers L, Hensel M, Hansmeier N. A versatile remote control system for functional expression of bacterial virulence genes based on the tetA promoter. Int J Med Microbiol 2019; 309:54-65. [DOI: 10.1016/j.ijmm.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
|