1
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Chen YY, Chi H, Liao WC, Li SW, Yang YC, Lin HC, Chang HP, Pan YJ, Chiang RL, Hsieh YC. Genomic analysis of penicillin-binding proteins and recombination events in an emerging amoxicillin- and meropenem-resistant PMEN3 (Spain 9V-3, ST156) variant in Taiwan and comparison with global descendants of this lineage. Microbiol Spectr 2023; 11:e0184023. [PMID: 37930013 PMCID: PMC10715136 DOI: 10.1128/spectrum.01840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the β-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly β-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsin Chi
- Department of Medicine, MacKay Medicine College, New Taipei, Taiwan
- Department of Pediatrics, MacKay Children’s Hospital and MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Chao Liao
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Yu-Ching Yang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ho-Chen Lin
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hsiao-Pei Chang
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ruei-Lin Chiang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children’s Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Zuke JD, Erickson R, Hummels KR, Burton BM. Visualizing dynamic competence pili and DNA capture throughout the long axis of Bacillus subtilis. J Bacteriol 2023; 205:e0015623. [PMID: 37695859 PMCID: PMC10521363 DOI: 10.1128/jb.00156-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 09/13/2023] Open
Abstract
The first step in the process of bacterial natural transformation is DNA capture. Although long hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA binding had not yet been visualized for Bacillus subtilis. Here, we visualize functional competence pili in Bacillus subtilis using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy. In strains that produce pilin monomers within tenfold of wild-type levels, the median length of detectable pili is 300 nm. These pili are retractile and associate with DNA. The analysis of pilus distribution at the cell surface reveals that they are predominantly located along the long axis of the cell. The distribution is consistent with localization of proteins associated with subsequent transformation steps, DNA binding, and DNA translocation in the cytosol. These data suggest a distributed model for B. subtilis transformation machinery, in which initial steps of DNA capture occur throughout the long axis of the cell and subsequent steps may also occur away from the cell poles. IMPORTANCE This work provides novel visual evidence for DNA translocation across the cell wall during Bacillus subtilis natural competence, an essential step in the natural transformation process. Our data demonstrate the existence of natural competence-associated retractile pili that can bind exogenous DNA. Furthermore, we show that pilus biogenesis occurs throughout the cell long axis. These data strongly support DNA translocation occurring all along the lateral cell wall during natural competence, wherein pili are produced, bind to free DNA in the extracellular space, and finally retract to pull the bound DNA through the gap in the cell wall created during pilus biogenesis.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rachel Erickson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine R. Hummels
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Zuke JD, Erickson R, Hummels KR, Burton BM. Visualizing dynamic competence pili and DNA capture throughout the long axis of Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542325. [PMID: 37292776 PMCID: PMC10246001 DOI: 10.1101/2023.05.26.542325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first step in the process of bacterial natural transformation is DNA capture. Although long-hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA-binding had not yet been visualized for Bacillus subtilis. Here, we visualize functional competence pili in Bacillus subtilis using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy. In strains that produce pilin monomers within ten-fold of wild type levels, the median length of detectable pili is 300nm. These pili are retractile and associate with DNA. Analysis of pilus distribution at the cell surface reveals that they are predominantly located along the long axis of the cell. The distribution is consistent with localization of proteins associated with subsequent transformation steps, DNA-binding and DNA translocation in the cytosol. These data suggest a distributed model for B. subtilis transformation machinery, in which initial steps of DNA capture occur throughout the long axis of the cell and subsequent steps may also occur away from the cell poles.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin - Madison
- Microbiology Doctoral Training Program, University of Wisconsin - Madison
| | - Rachel Erickson
- Department of Bacteriology, University of Wisconsin - Madison
| | - Katherine R. Hummels
- Current address: Department of Microbiology and Immunology, Harvard Medical School
| | | |
Collapse
|
5
|
O'Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elfmann C, Fischer L, Stülke J, Rappsilber J. Protein complexes in cells by AI-assisted structural proteomics. Mol Syst Biol 2023; 19:e11544. [PMID: 36815589 PMCID: PMC10090944 DOI: 10.15252/msb.202311544] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Accurately modeling the structures of proteins and their complexes using artificial intelligence is revolutionizing molecular biology. Experimental data enable a candidate-based approach to systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking mass spectrometry and co-fractionation mass spectrometry (CoFrac-MS) to identify protein-protein interactions in the model Gram-positive bacterium Bacillus subtilis. We show that crosslinking interactions prior to cell lysis reveals protein interactions that are often lost upon cell lysis. We predict the structures of these protein interactions and others in the SubtiWiki database with AlphaFold-Multimer and, after controlling for the false-positive rate of the predictions, we propose novel structural models of 153 dimeric and 14 trimeric protein assemblies. Crosslinking MS data independently validates the AlphaFold predictions and scoring. We report and validate novel interactors of central cellular machineries that include the ribosome, RNA polymerase, and pyruvate dehydrogenase, assigning function to several uncharacterized proteins. Our approach uncovers protein-protein interactions inside intact cells, provides structural insight into their interaction interfaces, and is applicable to genetically intractable organisms, including pathogenic bacteria.
Collapse
Affiliation(s)
- Francis J O'Reilly
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Present address:
Center for Structural Biology, Center for Cancer ResearchNational Cancer Institute (NCI)FrederickMDUSA
| | | | | | - Rica Bremenkamp
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | | | - Swantje Lenz
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Christoph Elfmann
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Lutz Fischer
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and GeneticsAugust‐University GöttingenGöttingenGermany
| | - Juri Rappsilber
- Chair of BioanalyticsTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Ren CY, Xu QJ, Mathieu J, Alvarez PJJ, Zhu L, Zhao HP. A Carotenoid- and Nuclease-Producing Bacterium Can Mitigate Enterococcus faecalis Transformation by Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15167-15178. [PMID: 35862635 DOI: 10.1021/acs.est.2c03919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) through natural transformation is facilitated by factors that stabilize extracellular DNA (eDNA) and that induce reactive oxygen species (ROS) that permeabilize receptor cells and upregulate transformation competence genes. In this study, we demonstrate that Deinococcus radiodurans can mitigate this ARG dissemination pathway by removing both eDNA and ROS that make recipient cells more vulnerable to transformation. We used plasmid RP4 as source of extracellular ARGs (tetA, aphA, and blaTEM-2) and the opportunistic pathogen Enterococcus faecalis as receptor. The presence of D. radiodurans significantly reduced the transformation frequency from 2.5 ± 0.7 × 10-6 to 7.4 ± 1.4 × 10-7 (p < 0.05). Based on quantification of intracellular ROS accumulation and superoxide dismutase (SOD) activity, and quantitative polymerase chain reaction (qPCR) and transcriptomic analyses, we propose two mechanisms by which D. radiodurans mitigates E. faecalis transformation by ARGs: (a) residual antibiotics induce D. radiodurans to synthesize liposoluble carotenoids that scavenge ROS and thus mitigate the susceptibility of E. faecalis for eDNA uptake, and (b) eDNA induces D. radiodurans to synthesize extracellular nucleases that degrade eARGs. This mechanistic insight informs biological strategies (including bioaugmentation) to curtail the spread of ARGs through transformation.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
7
|
ComFC mediates transport and handling of single-stranded DNA during natural transformation. Nat Commun 2022; 13:1961. [PMID: 35414142 PMCID: PMC9005727 DOI: 10.1038/s41467-022-29494-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
The ComFC protein is essential for natural transformation, a process that plays a major role in the spread of antibiotic resistance genes and virulence factors across bacteria. However, its role remains largely unknown. Here, we show that Helicobacter pylori ComFC is involved in DNA transport through the cell membrane, and is required for the handling of the single-stranded DNA once it is delivered into the cytoplasm. The crystal structure of ComFC includes a zinc-finger motif and a putative phosphoribosyl transferase domain, both necessary for the protein's in vivo activity. Furthermore, we show that ComFC is a membrane-associated protein with affinity for single-stranded DNA. Our results suggest that ComFC provides the link between the transport of the transforming DNA into the cytoplasm and its handling by the recombination machinery.
Collapse
|
8
|
Pi H, Weiss A, Laut CL, Grunenwald CM, Lin HK, Yi XI, Stauff DL, Skaar EP. An RNA-binding protein acts as a major post-transcriptional modulator in Bacillus anthracis. Nat Commun 2022; 13:1491. [PMID: 35314695 PMCID: PMC8938561 DOI: 10.1038/s41467-022-29209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
HitRS is a two-component system that responds to cell envelope damage in the human pathogen Bacillus anthracis. Here we identify an RNA-binding protein, KrrA, that regulates HitRS function by modulating the stability of the hitRS mRNA. In addition to hitRS, KrrA binds to over 70 RNAs and, directly or indirectly, affects the expression of over 150 genes involved in multiple processes, including genetic competence, sporulation, RNA turnover, DNA repair, transport, and cellular metabolism. KrrA does not exhibit detectable nuclease activity in vitro, and thus the mechanism by which it modulates mRNA stability remains unclear.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Clare L Laut
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Caroline M Grunenwald
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Hannah K Lin
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Xinjie I Yi
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, Grove City, PA, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Natural transformation protein ComFA exhibits single-stranded DNA translocase activity. J Bacteriol 2022; 204:e0051821. [PMID: 35041498 DOI: 10.1128/jb.00518-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a handful of proteins required for natural transformation in gram-positive bacteria. Its structural resemblance to the DEAD-box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding in the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. Importance Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD-box helicase required for competence in gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD-box helicase-one with the capability of extended translocation on single-stranded DNA.
Collapse
|
10
|
Di Giacomo S, Toussaint F, Ledesma-García L, Knoops A, Vande Capelle F, Fremaux C, Horvath P, Ladrière JM, Ait-Abderrahim H, Hols P, Mignolet J. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6543703. [PMID: 35254446 PMCID: PMC9300618 DOI: 10.1093/femsre/fuac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
Collapse
Affiliation(s)
- Stefano Di Giacomo
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Frédéric Toussaint
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Florence Vande Capelle
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Christophe Fremaux
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Philippe Horvath
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Jean-Marc Ladrière
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | | | - Pascal Hols
- Corresponding author: Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5 (box L7.07.06), B-1348 Louvain-La-Neuve, Belgium. Tel: +3210478896; Fax: +3210472825; E-mail:
| | | |
Collapse
|
11
|
Huang L, Liu M, Ammanath AV, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Götz F, Wang M, Cheng A. Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Front Microbiol 2021; 12:712198. [PMID: 34566918 PMCID: PMC8459023 DOI: 10.3389/fmicb.2021.712198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
In our previous study, it was shown that Riemerella anatipestifer, a Gram-negative bacterium, is naturally competent, but the genes involved in the process of natural transformation remain largely unknown. In this study, a random transposon mutant library was constructed using the R. anatipestifer ATCC11845 strain to screen for the genes involved in natural transformation. Among the 3000 insertion mutants, nine mutants had completely lost the ability of natural transformation, and 14 mutants showed a significant decrease in natural transformation frequency. We found that the genes RA0C_RS04920, RA0C_RS04915, RA0C_RS02645, RA0C_RS04895, RA0C_RS05130, RA0C_RS05105, RA0C_RS09020, and RA0C_RS04870 are essential for the occurrence of natural transformation in R. anatipestifer ATCC11845. In particular, RA0C_RS04895, RA0C_RS05130, RA0C_RS05105, and RA0C_RS04870 were putatively annotated as ComEC, DprA, ComF, and RecA proteins, respectively, in the NCBI database. However, RA0C_RS02645, RA0C_RS04920, RA0C_RS04915, and RA0C_RS09020 were annotated as proteins with unknown function, with no homology to any well-characterized natural transformation machinery proteins. The homologs of these proteins are mainly distributed in the members of Flavobacteriaceae. Taken together, our results suggest that R. anatipestifer encodes a unique natural transformation machinery.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Aparna Viswanathan Ammanath
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
Extracellular Proteome Analysis Shows the Abundance of Histidine Kinase Sensor Protein, DNA Helicase, Putative Lipoprotein Containing Peptidase M75 Domain and Peptidase C39 Domain Protein in Leptospira interrogans Grown in EMJH Medium. Pathogens 2021; 10:pathogens10070852. [PMID: 34358002 PMCID: PMC8308593 DOI: 10.3390/pathogens10070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a re-emerging form of zoonosis that is caused by the spirochete pathogen Leptospira. Extracellular proteins play critical roles in the pathogenicity and survival of this pathogen in the host and environment. Extraction and analysis of extracellular proteins is a difficult task due to the abundance of enrichments like serum and bovine serum albumin in the culture medium, as is distinguishing them from the cellular proteins that may reach the analyte during extraction. In this study, extracellular proteins were separated as secretory proteins from the culture supernatant and surface proteins were separated during the washing of the cell pellet. The proteins identified were sorted based on the proportion of the cellular fractions and the extracellular fractions. The results showed the identification of 56 extracellular proteins, out of which 19 were exclusively extracellular. For those proteins, the difference in quantity with respect to their presence within the cell was found to be up to 1770-fold. Further, bioinformatics analysis elucidated characteristics and functions of the identified proteins. Orthologs of extracellular proteins in various Leptospira species were found to be closely related among different pathogenic forms. In addition to the identification of extracellular proteins, this study put forward a method for the extraction and identification of extracellular proteins.
Collapse
|
13
|
Hahn J, DeSantis M, Dubnau D. Mechanisms of Transforming DNA Uptake to the Periplasm of Bacillus subtilis. mBio 2021; 12:e0106121. [PMID: 34126763 PMCID: PMC8262900 DOI: 10.1128/mbio.01061-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
We demonstrate here that the acquisition of DNase resistance by transforming DNA, often assumed to indicate transport to the cytoplasm, reflects uptake to the periplasm, requiring a reevaluation of conclusions about the roles of several proteins in transformation. The new evidence suggests that the transformation pilus is needed for DNA binding to the cell surface near the cell poles and for the initiation of uptake. The cellular distribution of the membrane-anchored ComEA of Bacillus subtilis does not dramatically change during DNA uptake as does the unanchored ComEA of Vibrio and Neisseria. Instead, our evidence suggests that ComEA stabilizes the attachment of transforming DNA at localized regions in the periplasm and then mediates uptake, probably by a Brownian ratchet mechanism. Following that, the DNA is transferred to periplasmic portions of the channel protein ComEC, which plays a previously unsuspected role in uptake to the periplasm. We show that the transformation endonuclease NucA also facilitates uptake to the periplasm and that the previously demonstrated role of ComFA in the acquisition of DNase resistance derives from the instability of ComGA when ComFA is deleted. These results prompt a new understanding of the early stages of DNA uptake for transformation. IMPORTANCE Transformation is a widely distributed mechanism of bacterial horizontal gene transfer that plays a role in the spread of antibiotic resistance and virulence genes and more generally in evolution. Although transformation was discovered nearly a century ago and most, if not all the proteins required have been identified in several bacterial species, much remains poorly understood about the molecular mechanism of DNA uptake. This study uses epifluorescence microscopy to investigate the passage of labeled DNA into the compartment between the cell wall and the cell membrane of Bacillus subtilis, a necessary early step in transformation. The roles of individual proteins in this process are identified, and their modes of action are clarified.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Micaela DeSantis
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - David Dubnau
- Public Health Research Institute, Rutgers University, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
14
|
Yuan L, Wu H, Wang B, Jia C, Liang D, Caiyin QGL, Qiao J. ComX improves acid tolerance by regulating the expression of late competence proteins in Lactococcus lactis F44. J Dairy Sci 2021; 104:9556-9569. [PMID: 34147226 DOI: 10.3168/jds.2021-20184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
ComX can improve bacterial competence by modulating global gene expression. Although competence induction may also be a protective mechanism under stress, this has not been investigated in detail. Here, we demonstrated that ComX improved the acid tolerance and nisin yield of Lactococcus lactis, which is an important gram-positive bacterium increasingly used in modern biotechnological applications. We found that overexpression of comX could improve the survival rate up to 36.5% at pH 4.0, compared with only 5.4% and 1.1% with the wild-type and comX knockout strains, respectively. Moreover, quantitative real-time PCR results indicated that comX overexpression stimulated the expression of late competence genes synergistically with exposure to acid stress. Finally, electrophoretic mobility shift assay demonstrated the binding of purified ComX to the cin-box in the promoters of these genes. Taken together, our results reveal a regulation mechanism by which ComX and acid stress can synergistically modulate the expression of late competence genes to enhance cells' acid tolerance and nisin yield.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Department of Bioengineering, School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300072, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Binbin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; School of Life Science, Shanxi Normal University, Linfen 41000, P. R. China
| | - Cuili Jia
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Qing-Ge-Le Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China.
| |
Collapse
|
15
|
Silale A, Lea SM, Berks BC. The DNA transporter ComEC has metal-dependent nuclease activity that is important for natural transformation. Mol Microbiol 2021; 116:416-426. [PMID: 33772889 PMCID: PMC8579336 DOI: 10.1111/mmi.14720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
In the process of natural transformation bacteria import extracellular DNA molecules for integration into their genome. One strand of the incoming DNA molecule is degraded, whereas the remaining strand is transported across the cytoplasmic membrane. The DNA transport channel is provided by the protein ComEC. Many ComEC proteins have an extracellular C-terminal domain (CTD) with homology to the metallo-β-lactamase fold. Here we show that this CTD binds Mn2+ ions and exhibits Mn2+ -dependent phosphodiesterase and nuclease activities. Inactivation of the enzymatic activity of the CTD severely inhibits natural transformation in Bacillus subtilis. These data suggest that the ComEC CTD is a nuclease responsible for degrading the nontransforming DNA strand during natural transformation and that this process is important for efficient DNA import.
Collapse
Affiliation(s)
- Augustinas Silale
- Department of Biochemistry, University of Oxford, Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Johnston CH, Soulet AL, Bergé M, Prudhomme M, De Lemos D, Polard P. The alternative sigma factor σ X mediates competence shut-off at the cell pole in Streptococcus pneumoniae. eLife 2020; 9:62907. [PMID: 33135635 PMCID: PMC7665891 DOI: 10.7554/elife.62907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Competence is a widespread bacterial differentiation program driving antibiotic resistance and virulence in many pathogens. Here, we studied the spatiotemporal localization dynamics of the key regulators that master the two intertwined and transient transcription waves defining competence in Streptococcus pneumoniae. The first wave relies on the stress-inducible phosphorelay between ComD and ComE proteins, and the second on the alternative sigma factor σX, which directs the expression of the DprA protein that turns off competence through interaction with phosphorylated ComE. We found that ComD, σX and DprA stably co-localize at one pole in competent cells, with σX physically conveying DprA next to ComD. Through this polar DprA targeting function, σX mediates the timely shut-off of the pneumococcal competence cycle, preserving cell fitness. Altogether, this study unveils an unprecedented role for a transcription σ factor in spatially coordinating the negative feedback loop of its own genetic circuit.
Collapse
Affiliation(s)
- Calum Hg Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Matthieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France.,Dept. Microbiology and Molecular Medicine, Institute of Genetics & Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM ; UMR5100), Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.,Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
18
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
19
|
Ithurbide S, Coste G, Lisboa J, Eugénie N, Bentchikou E, Bouthier de la Tour C, Liger D, Confalonieri F, Sommer S, Quevillon-Cheruel S, Servant P. Natural Transformation in Deinococcus radiodurans: A Genetic Analysis Reveals the Major Roles of DprA, DdrB, RecA, RecF, and RecO Proteins. Front Microbiol 2020; 11:1253. [PMID: 32625182 PMCID: PMC7314969 DOI: 10.3389/fmicb.2020.01253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/18/2020] [Indexed: 11/14/2022] Open
Abstract
Horizontal gene transfer is a major driver of bacterial evolution and adaptation to environmental stresses, occurring notably via transformation of naturally competent organisms. The Deinococcus radiodurans bacterium, characterized by its extreme radioresistance, is also naturally competent. Here, we investigated the role of D. radiodurans players involved in different steps of natural transformation. First, we identified the factors (PilQ, PilD, type IV pilins, PilB, PilT, ComEC-ComEA, and ComF) involved in DNA uptake and DNA translocation across the external and cytoplasmic membranes and showed that the DNA-uptake machinery is similar to that described in the Gram negative bacterium Vibrio cholerae. Then, we studied the involvement of recombination and DNA repair proteins, RecA, RecF, RecO, DprA, and DdrB into the DNA processing steps of D. radiodurans transformation by plasmid and genomic DNA. The transformation frequency of the cells devoid of DprA, a highly conserved protein among competent species, strongly decreased but was not completely abolished whereas it was completely abolished in ΔdprA ΔrecF, ΔdprA ΔrecO, and ΔdprA ΔddrB double mutants. We propose that RecF and RecO, belonging to the recombination mediator complex, and DdrB, a specific deinococcal DNA binding protein, can replace a function played by DprA, or alternatively, act at a different step of recombination with DprA. We also demonstrated that a ΔdprA mutant is as resistant as wild type to various doses of γ-irradiation, suggesting that DprA, and potentially transformation, do not play a major role in D. radiodurans radioresistance.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Geneviève Coste
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Johnny Lisboa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Nicolas Eugénie
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Esma Bentchikou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dominique Liger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Suzanne Sommer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
20
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Liu Y, Zeng Y, Huang Y, Gu L, Wang S, Li C, Morrison DA, Deng H, Zhang JR. HtrA-mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Mol Microbiol 2019; 112:1308-1325. [PMID: 31396996 DOI: 10.1111/mmi.14364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Natural transformation mediates horizontal gene transfer, and thereby promotes exchange of antibiotic resistance and virulence traits among bacteria. Streptococcus pneumoniae, the first known transformable bacterium, rapidly activates and then terminates the transformation state, but it is unclear how the bacterium accomplishes this rapid turn-around at the protein level. This work determined the transcriptomic and proteomic dynamics during the window of pneumococcal transformation. RNA sequencing revealed a nearly uniform temporal pattern of rapid transcriptional activation and subsequent shutdown for the genes encoding transformation proteins. In contrast, mass spectrometry analysis showed that the majority of transformation proteins were substantially preserved beyond the window of transformation. However, ComEA and ComEC, major components of the DNA uptake apparatus for transformation, were completely degraded at the end of transformation. Further mutagenesis screening revealed that the membrane-associated serine protease HtrA mediates selective degradation of ComEA and ComEC, strongly suggesting that breakdown of the DNA uptake apparatus by HtrA is an important mechanism for termination of pneumococcal transformation. Finally, our mutagenesis analysis showed that HtrA inhibits natural transformation of Streptococcus mitis and Streptococcus gordonii. Together, this work has revealed that HtrA regulates the level and duration of natural transformation in multiple streptococcal species.
Collapse
Affiliation(s)
- Yanni Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Lixiao Gu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Abstract
Natural transformation is a major mechanism of horizontal gene transfer. Although the genes required for natural transformation are nearly ubiquitous in bacteria, it is commonly reported that some isolates of transformable species fail to transform. In Legionella pneumophila, we show that the inability of multiple clinical isolates to transform is caused by a conjugative element that shuts down expression of genes required for transformation. Diverse conjugative elements in the Legionella genus have adopted the same inhibition strategy. We propose that inhibition of natural transformation by episomal and integrated conjugative elements can explain the lack of transformability of isolates and also the apparent lack of natural transformation in some species. Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila. GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.
Collapse
|
23
|
Muschiol S, Aschtgen MS, Nannapaneni P, Henriques-Normark B. Gram-Positive Type IV Pili and Competence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0011-2018. [PMID: 30737914 PMCID: PMC11588153 DOI: 10.1128/microbiolspec.psib-0011-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are remarkable bacterial surface appendages that carry out a range of functions. Various types of T4P have been identified in bacteria and archaea, making them almost universal structures in prokaryotes. T4P are best characterized in Gram-negative bacteria, in which pilus biogenesis and T4P-mediated functions have been studied for decades. Recent advances in microbial whole-genome sequencing have provided ample evidence for the existence of T4P also in many Gram-positive species. However, comparatively little is known, and T4P in Gram-positive bacteria are just beginning to be dissected. So far, they have mainly been studied in Clostridium and Streptococcus spp. and are involved in diverse cellular processes such as adhesion, motility, and horizontal gene transfer. Here we summarize the current understanding of T4P in Gram-positive species and their functions, with particular focus on the type IV competence pilus produced by the human pathogen Streptococcus pneumoniae and its role in natural transformation.
Collapse
Affiliation(s)
- Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Priyanka Nannapaneni
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology
- Department of Clinical Microbiology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
24
|
Fluorescently Labeled DNA Interacts with Competence and Recombination Proteins and Is Integrated and Expressed Following Natural Transformation of Bacillus subtilis. mBio 2018; 9:mBio.01161-18. [PMID: 30254116 PMCID: PMC6156202 DOI: 10.1128/mbio.01161-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During competence, Bacillus subtilis is able to take up DNA from its environment through the process of transformation. We investigated the ability of B. subtilis to take up fluorescently labeled DNA and found that it is able to take up fluorescein-dUTP-, DyLight 550-dUTP-, and DyLight 650-dUTP-labeled DNA. Transformation with labeled DNA containing an antibiotic cassette resulted in uptake of the labeled DNA and also generated antibiotic-resistant colonies. DNA is primarily taken up at the pole, as it can be seen to colocalize with ComFC, which is a component of the competence machinery. The DNA is taken up rapidly and can be seen to localize with (the actively searching form of) RecA. Colocalization with a homologous locus on the chromosome increases over time. Using microfluidics, we observed replacement of the homologous locus and subsequent expression of the integrated labeled and unlabeled DNA, although whether the integrated DNA contains labeled nucleotides needs to be determined conclusively. Integrated DNA in cells with a doubling time of 60 min is expressed on average 6 h 45 min after the addition of DNA and 4 h 45 min after the addition of fresh medium. We also found that the expression of the incoming DNA under these conditions can occur before cell division and, thus, before complete exit from the competence state. Because the competence machinery is conserved among naturally competent bacteria, this method of labeling is also suitable for studying transformation of other naturally competent bacteria.IMPORTANCE We used DNA that was covalently labeled with fluorescent nucleotides to investigate the transformation process of Bacillus subtilis at the molecular level. We show that the labeled DNA colocalizes with components of the competence machinery, the chromosome, and the recombination protein RecA. Using time-lapse microscopy and microfluidics, we visualized, in real-time, the uptake of fluorescently labeled DNA. We found that under these conditions, cell division is not required for the expression of integrated DNA. Because the competence machinery is conserved in naturally competent bacteria, this method can also be used to investigate the transformation process in many other bacterial species.
Collapse
|
25
|
Sun D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. Front Microbiol 2018; 9:2154. [PMID: 30237794 PMCID: PMC6135910 DOI: 10.3389/fmicb.2018.02154] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in bacterial evolution. It is well accepted that DNA is pulled/pushed into recipient cells by conserved membrane-associated DNA transport systems, which allow the entry of only single-stranded DNA (ssDNA). However, recent studies have uncovered a new type of natural bacterial transformation in which double-stranded DNA (dsDNA) is taken up into the cytoplasm, thus complementing the existing methods of DNA transfer among bacteria. Regulated by the stationary-phase regulators RpoS and cAMP receptor protein (CRP), Escherichia coli establishes competence for natural transformation with dsDNA, which occurs in agar plates. To pass across the outer membrane, a putative channel, which may compete for the substrate with the porin OmpA, may mediate the transfer of exogenous dsDNA into the cell. To pass across the inner membrane, dsDNA may be bound to the periplasmic protein YdcS, which delivers it into the inner membrane channel formed by YdcV. The discovery of cell-to-cell contact-dependent plasmid transformation implies the presence of additional mechanism(s) of transformation. This review will summarize the current knowledge about mechanisms of HGT with an emphasis on recent progresses regarding non-canonical mechanisms of natural transformation. Fully understanding the mechanisms of HGT will provide a foundation for monitoring and controlling multidrug resistance.
Collapse
Affiliation(s)
- Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
Johnston C, Mortier-Barriere I, Khemici V, Polard P. Fine-tuning cellular levels of DprA ensures transformant fitness in the human pathogen Streptococcus pneumoniae. Mol Microbiol 2018; 109:663-675. [PMID: 29995987 DOI: 10.1111/mmi.14068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 01/12/2023]
Abstract
Natural genetic transformation is a widespread mechanism of horizontal gene transfer. It involves the internalization of exogenous DNA as single strands and chromosomal integration via homologous recombination, promoting acquisition of new genetic traits. Transformation occurs during a distinct physiological state called competence. In Streptococcus pneumoniae, competence is controlled by ComDE, a two-component system induced by an exported peptide pheromone. DprA is universal among transformable species, strongly induced during pneumococcal competence, and crucial for pneumococcal transformation. Pneumococcal DprA plays three crucial roles in transformation and competence. Firstly, DprA protects internalized DNA from degradation. Secondly, DprA loads the homologous recombinase RecA onto transforming DNA to promote transformation. Finally, DprA interacts with the response regulator ComE to shut-off competence. Here, we explored the effect of altering the cellular levels of DprA on these three roles. High cellular levels of DprA were not required for the primary role of DprA as a transformation-dedicated recombinase loader or for protection of transforming DNA. In contrast, full expression of dprA was required for optimal competence shut-off and transformant fitness. High cellular levels of DprA thus ensure the fitness of pneumococcal transformants by mediating competence shut-off. This promotes survival and propagation of transformants, maximizing pneumococcal adaptive potential.
Collapse
Affiliation(s)
- Calum Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Isabelle Mortier-Barriere
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Vanessa Khemici
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|