1
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
3
|
Boudreau BA, Hustmyer CM, Kotlajich MV, Landick R. In Vitro Transcription Assay to Quantify Effects of H-NS Filaments on RNA Chain Elongation by RNA Polymerase. Methods Mol Biol 2024; 2819:381-419. [PMID: 39028516 DOI: 10.1007/978-1-0716-3930-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.
Collapse
Affiliation(s)
- Beth A Boudreau
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Christine M Hustmyer
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Matthew V Kotlajich
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA
| | - Robert Landick
- Departments of Biochemistry, University of Wisconsin - Madison, Madison, WI, USA.
- Departments of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Rangarajan AA, Yilmaz C, Schnetz K. Genetic Approaches to Study the Interplay Between Transcription and Nucleoid-Associated Proteins in Escherichia coli. Methods Mol Biol 2024; 2819:225-240. [PMID: 39028509 DOI: 10.1007/978-1-0716-3930-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial nucleoid-associated proteins are important factors in regulation of transcription, in nucleoid structuring, and in homeostasis of DNA supercoiling. Vice versa, transcription influences DNA supercoiling and can affect DNA binding of nucleoid-associated proteins (NAPs) such as H-NS in Escherichia coli. Here we describe genetic tools to study the interplay between transcription and nucleoid-associated proteins in E. coli. These methods include construction of genomic and plasmidic transcriptional and translational lacZ reporter gene fusions to study regulation of promoters; insertion of promoter cassettes to drive transcription into a locus of interest in the genome, for example, an H-NS-bound locus; and construction of isogenic hns and stpA mutants and precautions in doing so.
Collapse
Affiliation(s)
- Aathmaja Anandhi Rangarajan
- Institute for Genetics, University of Cologne, Cologne, Germany
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Cihan Yilmaz
- Institute for Genetics, University of Cologne, Cologne, Germany
- Qiagen, Hilden, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
6
|
Rashid FZM, Dame RT. Three-dimensional chromosome re-modelling: The integral mechanism of transcription regulation in bacteria. Mol Microbiol 2023; 120:60-70. [PMID: 37433047 DOI: 10.1111/mmi.15062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 07/13/2023]
Abstract
Nucleoid-associated proteins (NAPs) are architectural proteins of the bacterial chromosome and transcription factors that dynamically organise the chromosome and regulate gene expression in response to physicochemical environmental signals. While the architectural and regulatory functions of NAPs have been verified independently, the coupling between these functions in vivo has not been conclusively proven. Here we describe a model NAP - histone-like nucleoid structuring protein (H-NS) - as a coupled sensor-effector that directly regulates gene expression by chromatin re-modelling in response to physicochemical environmental signals. We outline how H-NS-binding partners and post-translational modifications modulate the role of H-NS as a transcription factor by influencing its DNA structuring properties. We consolidate our ideas in models of how H-NS may regulate the expression of the proVWX and hlyCABD operons by chromatin re-modelling. The interplay between chromosome structure and gene expression may be a common - but, at present, under-appreciated - concept of transcription regulation in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Figueroa-Bossi N, Sánchez-Romero MA, Kerboriou P, Naquin D, Mendes C, Bouloc P, Casadesús J, Bossi L. Pervasive transcription enhances the accessibility of H-NS-silenced promoters and generates bistability in Salmonella virulence gene expression. Proc Natl Acad Sci U S A 2022; 119:e2203011119. [PMID: 35858437 PMCID: PMC9335307 DOI: 10.1073/pnas.2203011119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023] Open
Abstract
In Escherichia coli and Salmonella, many genes silenced by the nucleoid structuring protein H-NS are activated upon inhibiting Rho-dependent transcription termination. This response is poorly understood and difficult to reconcile with the view that H-NS acts mainly by blocking transcription initiation. Here we have analyzed the basis for the up-regulation of H-NS-silenced Salmonella pathogenicity island 1 (SPI-1) in cells depleted of Rho-cofactor NusG. Evidence from genetic experiments, semiquantitative 5' rapid amplification of complementary DNA ends sequencing (5' RACE-Seq), and chromatin immunoprecipitation sequencing (ChIP-Seq) shows that transcription originating from spurious antisense promoters, when not stopped by Rho, elongates into a H-NS-bound regulatory region of SPI-1, displacing H-NS and rendering the DNA accessible to the master regulator HilD. In turn, HilD's ability to activate its own transcription triggers a positive feedback loop that results in transcriptional activation of the entire SPI-1. Significantly, single-cell analyses revealed that this mechanism is largely responsible for the coexistence of two subpopulations of cells that either express or do not express SPI-1 genes. We propose that cell-to-cell differences produced by stochastic spurious transcription, combined with feedback loops that perpetuate the activated state, can generate bimodal gene expression patterns in bacterial populations.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Clara Mendes
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
High Abundance of Transcription Regulators Compacts the Nucleoid in Escherichia coli. J Bacteriol 2022; 204:e0002622. [PMID: 35583339 DOI: 10.1128/jb.00026-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In enteric bacteria organization of the circular chromosomal DNA into a highly dynamic and toroidal-shaped nucleoid involves various factors, such as DNA supercoiling, nucleoid-associated proteins (NAPs), the structural maintenance of chromatin (SMC) complex, and macrodomain organizing proteins. Here, we show that ectopic expression of transcription regulators at high levels leads to nucleoid compaction. This serendipitous result was obtained by fluorescence microscopy upon ectopic expression of the transcription regulator and phosphodiesterase PdeL of Escherichia coli. Nucleoid compaction by PdeL depends on DNA-binding, but not on its enzymatic phosphodiesterase activity. Nucleoid compaction was also observed upon high-level ectopic expression of the transcription regulators LacI, RutR, RcsB, LeuO, and Cra, which range from single-target gene regulators to global regulators. In the case of LacI, its high-level expression in the presence of the gratuitous inducer IPTG (isopropyl-β-d-thiogalactopyranoside) also led to nucleoid compaction, indicating that compaction is caused by unspecific DNA-binding. In all cases nucleoid compaction correlated with misplacement of the FtsZ ring and loss of MukB foci, a subunit of the SMC complex. Thus, high levels of several transcription regulators cause nucleoid compaction with consequences for replication and cell division. IMPORTANCE The bacterial nucleoid is a highly organized and dynamic structure for simultaneous transcription, replication, and segregation of the bacterial genome. Compaction of the nucleoid and disturbance of DNA segregation and cell division by artificially high levels of transcription regulators, as described here, reveals that an excess of DNA-binding protein disturbs nucleoid structuring. The results suggest that ectopic expression levels of DNA-binding proteins for genetic studies of their function but also for their purification should be carefully controlled and adjusted.
Collapse
|
9
|
Li P, Wang X, Smith C, Shi Y, Wade JT, Sun W. Dissecting psa Locus Regulation in Yersinia pestis. J Bacteriol 2021; 203:e0023721. [PMID: 34280001 PMCID: PMC8425409 DOI: 10.1128/jb.00237-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
The pH 6 antigen (PsaA) of Yersinia pestis is a virulence factor that is expressed in response to high temperature (37°C) and low pH (6.0). Previous studies have implicated the PsaE and PsaF regulators in the temperature- and pH-dependent regulation of psaA. Here, we show that PsaE levels are themselves controlled by pH and temperature, explaining the regulation of psaA. We identify hundreds of binding sites for PsaE across the Y. pestis genome, with the majority of binding sites located in intergenic regions bound by the nucleoid-associated protein H-NS. However, we detect direct regulation of only two transcripts by PsaE, likely due to displacement of H-NS from the corresponding promoter regions; our data suggest that most PsaE binding sites are nonregulatory or that they require additional environmental cues. We also identify the precise binding sites for PsaE that are required for temperature- and pH-dependent regulation of psaA and psaE. Thus, our data reveal the critical role that PsaE plays in the regulation of psaA and suggest that PsaE may have many additional regulatory targets. IMPORTANCE Y. pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. The plague bacillus has been used as a biological weapon during human history and is currently one of the most likely biological threats. PsaA and PsaE appear to play important roles during Y. pestis infection. Understanding their regulation by environmental cues would facilitate a solution to impede Y. pestis infection.
Collapse
Affiliation(s)
- Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Yixin Shi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health University at Albany, Rensselaer, New York, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
10
|
Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in Streptomyces. mBio 2021; 12:e0107721. [PMID: 34311581 PMCID: PMC8406272 DOI: 10.1128/mbio.01077-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to “countersilence” Lsr2’s repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.
Collapse
|
11
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
12
|
Kiselev S, Markelova N, Masulis I. Divergently Transcribed ncRNAs in Escherichia coli: Refinement of the Transcription Starts Assumes Functional Diversification. Front Mol Biosci 2021; 8:610453. [PMID: 33748186 PMCID: PMC7967276 DOI: 10.3389/fmolb.2021.610453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding regulatory RNAs (ncRNAs) comprise specialized group of essential genetically encoded biological molecules involved in the wide variety of cellular metabolic processes. The progressive increase in the number of newly identified ncRNAs and the defining of their genome location indicate their predominant nesting in intergenic regions and expression under the control of their own regulatory elements. At the same time, the regulation of ncRNA's transcription cannot be considered in isolation from the processes occurring in the immediate genetic environment. A number of experimental data indicate the notable impact of positional regulation of gene expression mediated by dynamic temporal DNA rearrangements accompanying transcription events in the vicinity of neighboring genes. This issue can be perceived as particularly significant for divergently transcribed ncRNAs being actually subjected to double regulatory pressure. Based on available results of RNAseq experiments for Escherichia coli, we screened out divergent ncRNAs and the adjacent genes for the exact positions of transcription start sites (TSSs) and relative efficiency of RNA production. This analysis revealed extension or shortening of some previously annotated ncRNAs resulting in modified secondary structure, confirmed stable expression of four ncRNAs annotated earlier as putative, and approved the possibility of expression of divergently transcribed ncRNAs containing repetitive extragenic palindromic (REP) elements. The biogenesis of secreted ncRNAs from divergently transcribed ffs, chiX, ralA, and ryhB is discussed taking into account positions of TSSs. Refinement of TSSs for the neighboring genes renders some ncRNAs as true antisense overlapping with 5'UTR of divergently transcribed mRNAs.
Collapse
Affiliation(s)
| | | | - Irina Masulis
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
13
|
Yilmaz C, Rangarajan AA, Schnetz K. The transcription regulator and c-di-GMP phosphodiesterase PdeL represses motility in Escherichia coli. J Bacteriol 2020; 203:JB.00427-20. [PMID: 33318048 PMCID: PMC8095459 DOI: 10.1128/jb.00427-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
PdeL is a transcription regulator and catalytically active c-di-GMP phosphodiesterases (PDE) in Escherichia coli PdeL has been shown to be a transcription autoregulator, while no other target genes have been identified so far. Here, we show that PdeL represses transcription of the flagella class II operon, fliFGHIJK, and activates sslE encoding an extracellular anchored metalloprotease, among additional loci. DNA-binding studies and expression analyses using plasmidic reporters suggest that regulation of the fliF and sslE promoters by PdeL is direct. Transcription repression of the fliFGHIJK operon, encoding protein required for assembly of the flagellar basal body, results in inhibition of motility on soft agar plates and reduction of flagella assembly, as shown by fluorescence staining of the flagella hook protein FlgE. PdeL-mediated repression of motility is independent of its phosphodiesterase activity. Thus, in motility control the transcription regulator function of PdeL reducing the number of assembled flagella is apparently epistatic to its phosphodiesterase function, which can indirectly promote the activity of the flagellar motor by lowering the c-di-GMP concentration.Bacteria adopt different lifestyles depending on their environment and physiological condition. In Escherichia coli and other enteric bacteria the transition between the motile and the sessile state is controlled at multiple levels from the regulation of gene expression to the modulation of various processes by the second messenger c-di-GMP as signaling molecule. The significance of our research is in identifying PdeL, a protein of dual function that hydrolyzes c-di-GMP and that regulates transcription of genes, as a repressor of Flagella gene expression and an inhibitor of motility, which adds an additional regulatory switch to the control of motility.
Collapse
Affiliation(s)
- Cihan Yilmaz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | | | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
14
|
Salmonella expresses foreign genes during infection by degrading their silencer. Proc Natl Acad Sci U S A 2020; 117:8074-8082. [PMID: 32209674 DOI: 10.1073/pnas.1912808117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heat-stable nucleoid structuring (H-NS, also referred to as histone-like nucleoid structuring) protein silences transcription of foreign genes in a variety of Gram-negative bacterial species. To take advantage of the products encoded in foreign genes, bacteria must overcome the silencing effects of H-NS. Because H-NS amounts are believed to remain constant, overcoming gene silencing has largely been ascribed to proteins that outcompete H-NS for binding to AT-rich foreign DNA. However, we report here that the facultative intracellular pathogen Salmonella enterica serovar Typhimurium decreases H-NS amounts 16-fold when inside macrophages. This decrease requires both the protease Lon and the DNA-binding virulence regulator PhoP. The decrease in H-NS abundance reduces H-NS binding to foreign DNA, allowing transcription of foreign genes, including those required for intramacrophage survival. The purified Lon protease degraded free H-NS but not DNA-bound H-NS. By displacing H-NS from DNA, the PhoP protein promoted H-NS proteolysis, thereby de-repressing foreign genes-even those whose regulatory sequences are not bound by PhoP. The uncovered mechanism enables a pathogen to express foreign virulence genes during infection without the need to evolve binding sites for antisilencing proteins at each foreign gene.
Collapse
|
15
|
Bossi L, Ratel M, Laurent C, Kerboriou P, Camilli A, Eveno E, Boudvillain M, Figueroa-Bossi N. NusG prevents transcriptional invasion of H-NS-silenced genes. PLoS Genet 2019; 15:e1008425. [PMID: 31589608 PMCID: PMC6797219 DOI: 10.1371/journal.pgen.1008425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
Evolutionarily conserved NusG protein enhances bacterial RNA polymerase processivity but can also promote transcription termination by binding to, and stimulating the activity of, Rho factor. Rho terminates transcription upon anchoring to cytidine-rich motifs, the so-called Rho utilization sites (Rut) in nascent RNA. Both NusG and Rho have been implicated in the silencing of horizontally-acquired A/T-rich DNA by nucleoid structuring protein H-NS. However, the relative roles of the two proteins in H-NS-mediated gene silencing remain incompletely defined. In the present study, a Salmonella strain carrying the nusG gene under the control of an arabinose-inducible repressor was used to assess the genome-wide response to NusG depletion. Results from two complementary approaches, i) screening lacZ protein fusions generated by random transposition and ii) transcriptomic analysis, converged to show that loss of NusG causes massive upregulation of Salmonella pathogenicity islands (SPIs) and other H-NS-silenced loci. A similar, although not identical, SPI-upregulated profile was observed in a strain with a mutation in the rho gene, Rho K130Q. Surprisingly, Rho mutation Y80C, which affects Rho's primary RNA binding domain, had either no effect or made H-NS-mediated silencing of SPIs even tighter. Thus, while corroborating the notion that bound H-NS can trigger Rho-dependent transcription termination in vivo, these data suggest that H-NS-elicited termination occurs entirely through a NusG-dependent pathway and is less dependent on Rut site binding by Rho. We provide evidence that through Rho recruitment, and possibly through other still unidentified mechanisms, NusG prevents pervasive transcripts from elongating into H-NS-silenced regions. Failure to perform this function causes the feedforward activation of the entire Salmonella virulence program. These findings provide further insight into NusG/Rho contribution in H-NS-mediated gene silencing and underscore the importance of this contribution for the proper functioning of a global regulatory response in growing bacteria. The complete set of transcriptomic data is freely available for viewing through a user-friendly genome browser interface.
Collapse
Affiliation(s)
- Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, France
| | - Mathilde Ratel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, France
| | - Camille Laurent
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, France
| | - Patricia Kerboriou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, France
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, United States of America
| | - Eric Eveno
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, France
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, France
| |
Collapse
|
16
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
17
|
Organization of DNA in Mammalian Mitochondria. Int J Mol Sci 2019; 20:ijms20112770. [PMID: 31195723 PMCID: PMC6600607 DOI: 10.3390/ijms20112770] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
Abstract
As with all organisms that must organize and condense their DNA to fit within the limited volume of a cell or a nucleus, mammalian mitochondrial DNA (mtDNA) is packaged into nucleoprotein structures called nucleoids. In this study, we first introduce the general modes of DNA compaction, especially the role of the nucleoid-associated proteins (NAPs) that structure the bacterial chromosome. We then present the mitochondrial nucleoid and the main factors responsible for packaging of mtDNA: ARS- (autonomously replicating sequence-) binding factor 2 protein (Abf2p) in yeast and mitochondrial transcription factor A (TFAM) in mammals. We summarize the single-molecule manipulation experiments on mtDNA compaction and visualization of mitochondrial nucleoids that have led to our current knowledge on mtDNA compaction. Lastly, we discuss the possible regulatory role of DNA packaging by TFAM in DNA transactions such as mtDNA replication and transcription.
Collapse
|
18
|
Scholz SA, Diao R, Wolfe MB, Fivenson EM, Lin XN, Freddolino PL. High-Resolution Mapping of the Escherichia coli Chromosome Reveals Positions of High and Low Transcription. Cell Syst 2019; 8:212-225.e9. [PMID: 30904377 DOI: 10.1016/j.cels.2019.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 01/28/2023]
Abstract
Recent studies on targeted gene integrations in bacteria have demonstrated that chromosomal location can substantially affect a gene's expression level. However, these studies have only provided information on a small number of sites. To measure position effects on transcriptional propensity at high resolution across the genome, we built and analyzed a library of over 144,000 genome-integrated, standardized reporters in a single mixed population of Escherichia coli. We observed more than 20-fold variations in transcriptional propensity across the genome when the length of the chromosome was binned into broad 4 kbp regions; greater variability was observed over smaller regions. Our data reveal peaks of high transcriptional propensity centered on ribosomal RNA operons and core metabolic genes, while prophages and mobile genetic elements were enriched in less transcribable regions. In total, our work supports the hypothesis that E. coli has evolved gene-independent mechanisms for regulating expression from specific regions of its genome.
Collapse
Affiliation(s)
- Scott A Scholz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48103, USA
| | - Rucheng Diao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48103, USA
| | - Michael B Wolfe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48103, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48103, USA
| | - Elayne M Fivenson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48103, USA
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48103, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48103, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
19
|
Kapshikar RM, Gowrishankar J. Direct inhibition of transcription in vitro by the isolated N-terminal domain of the Escherichia coli nucleoid-associated protein H-NS and by its paralogue Hha. MICROBIOLOGY-SGM 2019; 165:463-474. [PMID: 30724731 DOI: 10.1099/mic.0.000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-NS is an abundant nucleoid-associated protein in the enterobacteria that mediates both chromatin compaction and transcriptional silencing of numerous genes, especially those that have been acquired by horizontal transfer or that are involved in virulence functions. With two dimerization domains (N-terminal and central) and a C-terminal DNA-binding domain, the 15 kDa H-NS polypeptide can assemble as long polymeric filaments on DNA, and mutations in any of the three domains confer a dominant-negative phenotype in vivo by a subunit-poisoning mechanism. Here we confirm that several of these mutants [L26P, I119T and a truncation beyond residue 92(Δ93)] are also dominant-negative in vitro, in that they reverse the inhibition imposed by native H-NS in two different transcription assay formats (initiation+elongation, or elongation alone). On the other hand, another dominant-negative truncation mutant Δ64 (which possesses only the protein's N-terminal domain) per se completely and unexpectedly inhibited transcription in both assay formats. The Hha protein, which is a paralogue of H-NS and resembles its isolated N-terminal domain, also behaved like Δ64 as an inhibitor of transcription in vitro. We propose that under certain growth conditions, Escherichia coli RNA polymerase may be the direct inhibitory target of Hha, and that this effect is experimentally mimicked by the isolated N-terminal domain of H-NS.
Collapse
Affiliation(s)
- Rajvardhan M Kapshikar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,2Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - J Gowrishankar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
20
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
21
|
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018; 46:5525-5546. [PMID: 29718386 PMCID: PMC6009659 DOI: 10.1093/nar/gky265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.
Collapse
Affiliation(s)
- Beth A Boudreau
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Liang Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|