1
|
Sikora F, Budja LVP, Milojevic O, Ziemniewicz A, Dudys P, Görke B. Multiple regulatory inputs including cell envelope stress orchestrate expression of the Escherichia coli rpoN operon. Mol Microbiol 2024; 122:11-28. [PMID: 38770591 DOI: 10.1111/mmi.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The rpoN operon, an important regulatory hub in Enterobacteriaceae, includes rpoN encoding sigma factor σ54, hpf involved in ribosome hibernation, rapZ regulating glucosamine-6-phosphate levels, and two genes encoding proteins of the nitrogen-related phosphotransferase system. Little is known about regulatory mechanisms controlling the abundance of these proteins. This study employs transposon mutagenesis and chemical screens to dissect the complex expression of the rpoN operon. We find that envelope stress conditions trigger read-through transcription into the rpoN operon from a promoter located upstream of the preceding lptA-lptB locus. This promoter is controlled by the envelope stress sigma factor E and response regulator PhoP is required for its full response to a subset of stress signals. σE also stimulates ptsN-rapZ-npr expression using an element downstream of rpoN, presumably by interfering with mRNA processing by RNase E. Additionally, we identify a novel promoter in the 3' end of rpoN that directs transcription of the distal genes in response to ethanol. Finally, we show that translation of hpf and ptsN is individually regulated by the RNA chaperone Hfq, perhaps involving small RNAs. Collectively, our work demonstrates that the rpoN operon is subject to complex regulation, integrating signals related to envelope stress and carbon source quality.
Collapse
Affiliation(s)
- Florian Sikora
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Lara Veronika Perko Budja
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Olja Milojevic
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Amelia Ziemniewicz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Przemyslaw Dudys
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Boris Görke
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Zhang Y, Gholizadeh H, Young P, Traini D, Li M, Ong HX, Cheng S. Real-time in-situ electrochemical monitoring of Pseudomonas aeruginosa biofilms grown on air-liquid interface and its antibiotic susceptibility using a novel dual-chamber microfluidic device. Biotechnol Bioeng 2023; 120:702-714. [PMID: 36408870 DOI: 10.1002/bit.28288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air-liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Hanieh Gholizadeh
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
4
|
Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760. Microorganisms 2022; 11:microorganisms11010019. [PMID: 36677311 PMCID: PMC9867257 DOI: 10.3390/microorganisms11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Competition for nutrients and niches (CNN) is known to be one of the mechanisms for biocontrol mostly exhibited by Pseudomonas strains. Phenotypic and full genome analysis revealed Pseudomonas putida PCL1760 controlling tomato foot and root rot (TFRR) solely through CNN mechanism. Although the availability of nutrients and motility are the known conditions for CNN, persistence of bacteria through dormancy by ribosomal hibernation is a key phenomenon to evade both biotic and abiotic stress. To confirm this hypothesis, rsfS gene knockout mutant of PCL1760 (SB9) was first obtained through genetic constructions and compared with the wild type PCL1760. Primarily, relative expression of rsfS in PCL1760 was conducted on tomato seedlings which showed a higher expression at the apical part (1.02 ± 0.18) of the plant roots than the basal (0.41 ± 0.13). The growth curve and persistence in ceftriaxone after the induction of starvation with rifampicin were performed on both strains. Colonization on the tomato root by CFU and qPCR, including biocontrol ability against Fusarium, was also tested. The growth dynamics of both PCL1760 and SB9 in basal and rich medium statistically did not differ (p ≤ 0.05). There was a significant difference observed in persistence showing PCL1760 to be more persistent than its mutant SB9, while SB9 (pJeM2:rsfS) was 221.07 folds more than PCL1760. In colonization and biocontrol ability tests, PCL1760 was dominant over SB9 colonizing and controlling TFRR (in total, 3.044 × 104 to 6.95 × 103 fg/µL and 55.28% to 30.24%, respectively). The deletion of the rsfS gene in PCL1760 reduced the persistence and effectiveness of the strain, suggesting persistence as one important characteristic of the CNN.
Collapse
|
5
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
6
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
7
|
Theng S, Williamson KS, Franklin MJ. Role of Hibernation Promoting Factor in Ribosomal Protein Stability during Pseudomonas aeruginosa Dormancy. Int J Mol Sci 2020; 21:E9494. [PMID: 33327444 PMCID: PMC7764885 DOI: 10.3390/ijms21249494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
Collapse
Affiliation(s)
- Sokuntheary Theng
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
| | - Kerry S. Williamson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; (S.T.); (K.S.W.)
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
8
|
Wood TK, Song S. Forming and waking dormant cells: The ppGpp ribosome dimerization persister model. Biofilm 2020; 2:100018. [PMID: 33447804 PMCID: PMC7798447 DOI: 10.1016/j.bioflm.2019.100018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Procaryotes starve and face myriad stresses. The bulk population actively resists the stress, but a small population weathers the stress by entering a resting stage known as persistence. No mutations occur, and so persisters behave like wild-type cells upon removal of the stress and regrowth; hence, persisters are phenotypic variants. In contrast, resistant bacteria have mutations that allow cells to grow in the presence of antibiotics, and tolerant cells survive antibiotics better than actively-growing cells due to their slow growth (such as that of the stationary phase). In this review, we focus on the latest developments in studies related to the formation and resuscitation of persister cells and propose the guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) ribosome dimerization persister (PRDP) model for entering and exiting the persister state.
Collapse
Affiliation(s)
- Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
9
|
Functional Characterization of the Pseudomonas aeruginosa Ribosome Hibernation-Promoting Factor. J Bacteriol 2020; 202:JB.00280-20. [PMID: 32900865 DOI: 10.1128/jb.00280-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hibernation-promoting factor (HPF) is a ribosomal accessory protein that inactivates ribosomes during bacterial starvation. In Pseudomonas aeruginosa, HPF protects ribosome integrity while the cells are dormant. The sequence of HPF has diverged among bacteria but contains conserved charged amino acids in its two alpha helices that interact with the rRNA. Here, we characterized the function of HPF in P. aeruginosa by performing mutagenesis of the conserved residues and then assaying mutant HPF alleles for their ability to protect ribosome integrity of starved P. aeruginosa cells. The results show that HPF functionally tolerates point mutations in charged residues and in the conserved Y71 residue as well as a C-terminal truncation. Double and triple mutations of charged residues in helix 1 in combination with a Y71F substitution reduce HPF activity. Screening for single point mutations that caused impaired HPF activity identified additional substitutions in the two HPF alpha helices. However, alanine substitutions in equivalent positions restored HPF activity, indicating that HPF is tolerant to mutations that do not disrupt the protein structure. Surprisingly, heterologous HPFs from Gram-positive bacteria that have long C-terminal domains functionally complement the P. aeruginosa Δhpf mutant, suggesting that HPF may play a similar role in ribosome protection in other bacterial species. Collectively, the results show that HPF has diverged among bacteria and is tolerant to most single amino acid substitutions. The Y71 residue in combination with helix 1 is important for the functional role of HPF in ribosome protection during bacterial starvation and resuscitation of the bacteria from dormancy.IMPORTANCE In most environments, bacteria experience conditions where nutrients may be readily abundant or where nutrients are limited. Under nutrient limitation conditions, even non-spore-forming bacteria may enter a dormant state. Dormancy is accompanied by a variety of cellular physiological changes that are required for the cells to remain viable during dormancy and to resuscitate when nutrients become available. Among the physiological changes that occur in dormant bacteria is the inactivation and preservation of ribosomes by the dormancy protein, hibernation-promoting factor (HPF). In this study, we characterized the activity of HPF of Pseudomonas aeruginosa, an opportunistic pathogen that causes persistent infections, and analyzed the role of HPF in ribosome protection and bacterial survival during dormancy.
Collapse
|
10
|
Song S, Wood TK. Combatting Persister Cells With Substituted Indoles. Front Microbiol 2020; 11:1565. [PMID: 32733426 PMCID: PMC7358577 DOI: 10.3389/fmicb.2020.01565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Given that a subpopulation of most bacterial cells becomes dormant due to stress, and that the resting cells of pathogens can revive and reconstitute infections, it is imperative to find methods to treat dormant cells to eradicate infections. The dormant bacteria that are not spores or cysts are known as persister cells. Remarkably, in contrast to the original report that incorrectly indicated indole increases persistence, a large number of indole-related compounds have been found in the last few years that kill persister cells. Hence, in this review, along with a summary of recent results related to persister cell formation and resuscitation, we focus on the ability of indole and substituted indoles to combat the persister cells of both pathogens and non-pathogens.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju, South Korea
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
11
|
Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00426-18. [PMID: 30297357 PMCID: PMC6256015 DOI: 10.1128/jb.00426-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites. The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology. IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.
Collapse
|
12
|
Pérez‐Pantoja D, Kim J, Platero R, de Lorenzo V. The interplay of EIIANtrwith C‐source regulation of thePupromoter ofPseudomonas putidamt‐2. Environ Microbiol 2018; 20:4555-4566. [DOI: 10.1111/1462-2920.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Danilo Pérez‐Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica Metropolitana Ignacio Valdivieso 2409, San Joaquín, Santiago Chile
| | - Juhyun Kim
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| | - Raúl Platero
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSIC Campus de Cantoblanco, Madrid 28049 Spain
| |
Collapse
|