1
|
Gong C, Xu D, Sun D, Kang J, Wang W, Xu JR, Zhang X. FgSnt1 of the Set3 HDAC complex plays a key role in mediating the regulation of histone acetylation by the cAMP-PKA pathway in Fusarium graminearum. PLoS Genet 2022; 18:e1010510. [PMID: 36477146 PMCID: PMC9728937 DOI: 10.1371/journal.pgen.1010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
The cAMP-PKA pathway is critical for regulating growth, differentiation, and pathogenesis in fungal pathogens. In Fusarium graminearum, mutants deleted of PKR regulatory-subunit of PKA had severe defects but often produced spontaneous suppressors. In this study eleven pkr suppressors were found to have mutations in FgSNT1, a component of the Set3C histone deacetylase (HDAC) complex, that result in the truncation of its C-terminal region. Targeted deletion of the C-terminal 98 aa (CT98) in FgSNT1 suppressed the defects of pkr in growth and H4 acetylation. CT98 truncation also increased the interaction of FgSnt1 with Hdf1, a major HDAC in the Set3 complex. The pkr mutant had no detectable expression of the Cpk1 catalytic subunit and PKA activities, which was not suppressed by mutations in FgSNT1. Cpk1 directly interacted with the N-terminal region of FgSnt1 and phosphorylated it at S443, a conserved PKA-phosphorylation site. CT98 of FgSnt1 carrying the S443D mutation interacted with its own N-terminal region. Expression of FgSNT1S443D rescued the defects of pkr in growth and H4 acetylation. Therefore, phosphorylation at S443 and suppressor mutations may relieve self-inhibitory binding of FgSnt1 and increase its interaction with Hdf1 and H4 acetylation, indicating a key role of FgSnt1 in crosstalk between cAMP signaling and Set3 complex.
Collapse
Affiliation(s)
- Chen Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Daiying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Daiyuan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiangang Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (J-RX); (XZ)
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- * E-mail: (J-RX); (XZ)
| |
Collapse
|
2
|
PKR Protects the Major Catalytic Subunit of PKA Cpk1 from FgBlm10-Mediated Proteasome Degradation in Fusarium graminearum. Int J Mol Sci 2022; 23:ijms231810208. [PMID: 36142119 PMCID: PMC9499325 DOI: 10.3390/ijms231810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
For optimal proteolytic function, the proteasome core (CP or 20S) must associate with activators. The cAMP-PKA pathway is reported to affect the activity of the proteasome in humans. However, the relationship between the proteasome and PKA is not well characterized. Our results showed that the major catalytic subunit Cpk1 was degraded without the protection of Pkr. Eleven (out of 67) pkr suppressors had FgBlm10 C-terminal truncation, one suppressor had an amino acid change mutation in the PRE6 ortholog (FGRRES_07282), and one in the PRE5 ortholog (FGRRES_05222). These mutations rescued the defects in growth and conidial morphology, Cpk1 stability, and PKA activities in the pkr mutant. The interaction of FgBlm10 with FgPre5 and FgPre6 were detected by co-immunoprecipitation, and the essential elements for their interaction were characterized, including the FgBlm10 C-terminus, amino acid D82 of FgPre6 and K62 of FgPre5. Additional FgBlm10-interacting proteins were identified in the wild type and pkr mutant, suggesting that PKA regulates the preference of FgBlm10-mediated proteasome assembly. In addition, PKA indirectly affected the phosphorylation of FgBlm10, and its localization in the nucleus. The truncation of the FgBlm10 C terminus also enhanced nuclear import and bleomycin resistance, suggesting its role in proteasome assembly at DNA damage sites. Collectively, our data demonstrated that regulation between PKA and proteasome degradation is critical for the vegetative growth of F. graminearum.
Collapse
|
3
|
Zhu J, Hu D, Liu Q, Hou R, Xu JR, Wang G. Stage-Specific Genetic Interaction between FgYCK1 and FgBNI4 during Vegetative Growth and Conidiation in Fusarium graminearum. Int J Mol Sci 2022; 23:9106. [PMID: 36012372 PMCID: PMC9408904 DOI: 10.3390/ijms23169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
CK1 casein kinases are well conserved in filamentous fungi. However, their functions are not well characterized in plant pathogens. In Fusarium graminearum, deletion of FgYCK1 caused severe growth defects and loss of conidiation, fertility, and pathogenicity. Interestingly, the Fgyck1 mutant was not stable and often produced fast-growing spontaneous suppressors. Suppressor mutations were frequently identified in the FgBNI4 gene by sequencing analyses. Deletion of the entire FgBNI4 or disruptions of its conserved C-terminal region could suppress the defects of Fgyck1 in hyphal growth and conidiation, indicating the genetic relationship between FgYCK1 and FgBNI4. Furthermore, the Fgyck1 mutant showed defects in polarized growth, cell wall integrity, internalization of FgRho1 and vacuole fusion, which were all partially suppressed by deletion of FgBNI4. Overall, our results indicate a stage-specific functional relationship between FgYCK1 and FgBNI4, possibly via FgRho1 signaling for regulating polarized hyphal growth and cell wall integrity.
Collapse
Affiliation(s)
- Jindong Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Denghui Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Qianqian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
5
|
Li X, Fan Z, Yan M, Qu J, Xu JR, Jin Q. Spontaneous mutations in FgSAD1 suppress the growth defect of the Fgprp4 mutant by affecting tri-snRNP stability and its docking in Fusarium graminearum. Environ Microbiol 2019; 21:4488-4503. [PMID: 31291045 DOI: 10.1111/1462-2920.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
FgPrp4, the only kinase in the spliceosome, is not essential for viability, but is important for splicing efficiency in Fusarium graminearum. The Fgprp4 deletion mutant had severe growth defects but often produced spontaneous suppressors with faster growth rate. To better understand the suppression mechanism, we identified and characterized spontaneous mutations in the tri-snRNP-specific protein, FgSad1, which suppressed the growth defects of Fgprp4. The L512P mutation was verified for its suppressive effects on Fgprp4, suggesting that mutations in FgSad1 may have effects involving FgPrp4 phosphorylation on FgSad1. Phosphoproteomics analysis showed that FgSad1 may not be the direct substrate of FgPrp4 kinase. Furthermore, truncation analysis showed that the N-terminal, extra RS-rich region of FgSad1 is critical for its function and is post-translationally modified. The P258S or S269P mutations in FgSad1 increased its interactions with the U5 protein FgPrp8 and the U4/U6 protein FgPrp31, which may result in tri-snRNP stabilization. Additionally, the D76N mutation increased the association of FgSad1 with the U2 snRNP. These data indicate that suppressor mutations in FgSad1 increase the stability of the tri-snRNP and/or the affinity of FgSad1 with U2 snRNP and therefore potentially facilitate the docking of tri-snRNP into the spliceosome.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhili Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ming Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Qu
- Microbial Resource Center, Microbiology Institute of Shaanxi, Xi'an, Shaanxi, 710043, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Hao C, Yin J, Sun M, Wang Q, Liang J, Bian Z, Liu H, Xu J. The meiosis‐specific APC activator
FgAMA1
is dispensable for meiosis but important for ascosporogenesis in
Fusarium graminearum. Mol Microbiol 2019; 111:1245-1262. [DOI: 10.1111/mmi.14219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU‐Purdue Joint Research Center, College of Plant Protection Northwest A&F University Yangling Shaanxi 712100China
- Department of Botany and Plant Pathology Purdue University West Lafayette IN 47907USA
| |
Collapse
|