1
|
Singh P, Bankhead T. Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog 2025; 21:e1012871. [PMID: 39792948 PMCID: PMC11756760 DOI: 10.1371/journal.ppat.1012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown. The vls locus, which is the site of antigenic variation, has been notoriously challenging to manipulate genetically due to its highly conserved structural features, even with significant advancements in molecular biology and genetic engineering for this highly segmented pathogen. Our study highlights the pivotal role of plasmid topology in facilitating in trans gene recombination. We demonstrate that gene conversion can occur in trans when a copy of vlsE gene is present on a linear plasmid, contrary to previous observations suggesting a cis arrangement is required for vlsE recombination. Significantly, employing this in trans gene conversion strategy with a linear plasmid, we have, for the first time, achieved targeted genetic mutation of putative cis-acting elements in the native vlsE gene. This has unveiled a potentially crucial role for the 17 bp direct repeats that flank the central variable cassette region of vlsE. Furthermore, we validated the reliability and reproducibility of our mutational approach by successfully inserting stop codons at two distinct sites within the central variable cassette of vlsE. Thus, this study presents a significant methodological innovation enabling the direct manipulation of the vls locus and lays the groundwork for systematic exploration of specific mutations affecting the mechanism of antigenic variation. As a result, it creates new avenues for research and raises intriguing questions that could guide the development of novel methods to explore host-pathogen interactions of the agent of Lyme disease.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Norris SJ, Brangulis K. Meta-analysis of the Vmp-like sequences of Lyme disease Borrelia: evidence for the evolution of an elaborate antigenic variation system. Front Microbiol 2024; 15:1469411. [PMID: 39450289 PMCID: PMC11499132 DOI: 10.3389/fmicb.2024.1469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
VMP-like sequence (vls) antigenic variation systems are present in every Lyme disease Borrelia strain with complete genome sequences. The linear plasmid-encoded vls system consists of a single expression site (vlsE) and contiguous array(s) of silent cassettes that have ~90% identity with the central cassette region of the cognate vlsE gene; antigenic variation occurs through random, segmental, and unidirectional recombination of vls silent cassette sequences into the vlsE expression site. Automated annotation programs do not accurately recognize vls silent cassette sequences, so these regions are not correctly annotated in most genomic sequences. In this study, the vls sequences were re-analyzed in the genomic sequences of 31 available Lyme disease Borrelia and one relapsing fever Borrelia organisms, and this information was utilized to systematically compare the vls systems in different species and strains. In general, the results confirm the conservation of the overall architecture of the vls system, such as the head-to-head arrangement of vlsE and a contiguous series of vlsS silent cassette sequences and presence of inverted repeat sequences between the two regions. However, the data also provide evidence for the divergence of the vls silent cassette arrays through point mutations, short indels, duplication events, and rearrangements. The probable occurrence of convergent evolution toward a vls system-like locus is exemplified by Borrelia turcica, a variable large protein (Vlp) expressing organism that is a member of the relapsing fever Borrelia group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kalvis Brangulis
- Department of Human Physiology and Biochemistry, Faculty of Medicine, Rīga Stradiņš University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
3
|
Castellanos M, Verhey TB, Goldstein M, Chaconas G. The Putative Endonuclease Activity of MutL Is Required for the Segmental Gene Conversion Events That Drive Antigenic Variation of the Lyme Disease Spirochete. Front Microbiol 2022; 13:888494. [PMID: 35663861 PMCID: PMC9159922 DOI: 10.3389/fmicb.2022.888494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1–2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Theodore B. Verhey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Madeleine Goldstein
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: George Chaconas,
| |
Collapse
|
4
|
Huang J, Chen J, Xie Y, Liu Z. Subversion of the immune response of human pathogenic spirochetes. J Clin Lab Anal 2022; 36:e24414. [PMID: 35403248 PMCID: PMC9102653 DOI: 10.1002/jcla.24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jielite Huang
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| | - Jinlin Chen
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| | - Yafeng Xie
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
- Institution of Pathogenic Biology Medical College Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study University of South China Hengyang China
| | - Zhuoran Liu
- Department of Clinical Laboratory The Second Affiliated Hospital, Hengyang Medical School, University of South China Hengyang China
| |
Collapse
|
5
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
7
|
Winslow C, Coburn J. Recent discoveries and advancements in research on the Lyme disease spirochete Borrelia burgdorferi. F1000Res 2019; 8. [PMID: 31214329 PMCID: PMC6545822 DOI: 10.12688/f1000research.18379.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
This review highlights some of the highest-profile developments and advancements in the research on
Borrelia burgdorferi, the Lyme disease spirochete, that have emerged in the last two years. Particular emphasis is placed on the controversy surrounding genus nomenclature, antigenic variation at the
vlsE locus, genes involved in infectivity and virulence, membrane characteristics of
B. burgdorferi, and developments in experimental approaches.
Collapse
Affiliation(s)
- Christa Winslow
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
8
|
Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi. Mol Microbiol 2019; 111:750-763. [PMID: 30580501 DOI: 10.1111/mmi.14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|