1
|
Takeshita S, Iida Y. Impact of Fab1/Vac14 inhibition on β-1,3-glucanase localization at the tip in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 739:150928. [PMID: 39536411 DOI: 10.1016/j.bbrc.2024.150928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Deep mycosis is a severe fungal disease that could result in fatal outcomes. However, there is still a demand for highly effective and safe antifungal drugs, given the side effects of the existing treatments and the increase in the resistance to them. In this study, we evaluated the involvement of the lipid kinase Fab1 and its activator Vac14 (Fab1/Vac14) in tip growth in Saccharomyces cerevisiae INVSc1, along with their impact on cell proliferation, using a genetic approach to inhibit them. The results revealed that Fab1/Vac14 inhibition suppressed growth and caused an increase in the rate of β-1,3-glucanase (BGL2) fused with emerald green fluorescent protein (EmGFP) (BGL2-EmGFP) localization at the tip. The inhibition of the endocytic pathway using a lysosome inhibitor also resulted in an increased localization of BGL2-EmGFP at the tip. The overexpression of wild-type BGL2-EmGFP, but not that of the inactive mutant BGL2, led to a complete loss of the cell proliferation ability. These findings suggested that the Fab1/Vac14 complex could be a novel target for the development of antifungal drugs based on tip growth regulation, possibly via excessive cell wall degradation.
Collapse
Affiliation(s)
- Sen Takeshita
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, Kanagawa, 243-0292, Japan
| | - Yasuhiro Iida
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, Kanagawa, 243-0292, Japan.
| |
Collapse
|
2
|
Askari F, Vasavi B, Kaur R. Phosphatidylinositol 3-phosphate regulates iron transport via PI3P-binding CgPil1 protein. Cell Rep 2023; 42:112855. [PMID: 37490387 DOI: 10.1016/j.celrep.2023.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Iron homeostasis, which is pivotal to virulence, is regulated by the phosphatidylinositol 3-kinase CgVps34 in the human fungal pathogen Candida glabrata. Here, we identify CgPil1 as a phosphatidylinositol 3-phosphate (PI3P)-binding protein and unveil its role in retaining the high-affinity iron transporter CgFtr1 at the plasma membrane (PM), with PI3P negatively regulating CgFtr1-CgPil1 interaction. PI3P production and its PM localization are elevated in the high-iron environment. Surplus iron also leads to intracellular distribution and vacuolar delivery of CgPil1 and CgFtr1, respectively, from the PM. Loss of CgPil1 or CgFtr1 ubiquitination at lysines 391 and 401 results in CgFtr1 trafficking to the endoplasmic reticulum and a decrease in vacuole-localized CgFtr1. The E3-ubiquitin ligase CgRsp5 interacts with CgFtr1 and forms distinct CgRsp5-CgFtr1 puncta at the PM, with high iron resulting in their internalization. Finally, PI3P controls retrograde transport of many PM proteins. Altogether, we establish PI3P as a key regulator of membrane transport in C. glabrata.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Bhogadi Vasavi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
| |
Collapse
|
3
|
Bhakt P, Raney M, Kaur R. The SET-domain protein CgSet4 negatively regulates antifungal drug resistance via the ergosterol biosynthesis transcriptional regulator CgUpc2a. J Biol Chem 2022; 298:102485. [PMID: 36108742 PMCID: PMC9576903 DOI: 10.1016/j.jbc.2022.102485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Mayur Raney
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
4
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Gaspar-Cordeiro A, Afonso G, Amaral C, da Silva SM, Pimentel C. Zap1 is required for Candida glabrata response to fluconazole. FEMS Yeast Res 2022; 22:6510815. [PMID: 35040997 DOI: 10.1093/femsyr/foab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing prevalence of fluconazole-resistant clinical isolates of Candida spp. strongly hinders the widespread use of the drug. To tackle this problem, great efforts have been made to fully understand the fungal response to fluconazole. In this work, we show that the role of Zap1 in Candida glabrata goes beyond regulating yeast adaptation to zinc deficiency. In line with our previous observation that deletion of ZAP1 makes yeast cells more sensitive to fluconazole, we found that the mutant CgΔzap1 accumulates higher levels of the drug, which correlates well with its lower levels of ergosterol. Surprisingly, Zap1 is a negative regulator of the drug efflux transporter gene CDR1 and of its regulator, PDR1. The apparent paradox of drug accumulation in cells where genes encoding transporters relevant for drug extrusion are being overexpressed led us to postulate that their activity could be impaired. In agreement, Zap1-depleted cells present, in addition to decreased ergosterol levels, an altered composition of membrane phospholipids, which together should impact membrane function and impair the detoxification of fluconazole. Overall, our study brings to light Zap1 as an important hub in Candida glabrata response to fluconazole.
Collapse
Affiliation(s)
- A Gaspar-Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. República, 2780-157 Oeiras, Portugal
| | - G Afonso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. República, 2780-157 Oeiras, Portugal
| | - C Amaral
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. República, 2780-157 Oeiras, Portugal
| | - S M da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. República, 2780-157 Oeiras, Portugal
| | - C Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. República, 2780-157 Oeiras, Portugal
| |
Collapse
|
6
|
Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance. Antimicrob Agents Chemother 2021; 65:AAC.02415-20. [PMID: 33722894 DOI: 10.1128/aac.02415-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.
Collapse
|
7
|
Somboon P, Soontorngun N. An actin depolymerizing agent 19,20-epoxycytochalasin Q of Xylaria sp. BCC 1067 enhanced antifungal action of azole drugs through ROS-mediated cell death in yeast. Microbiol Res 2020; 243:126646. [PMID: 33227681 DOI: 10.1016/j.micres.2020.126646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Multidrug resistance is a highly conserved phenomenon among all living organisms and a major veritable public health problem worldwide. Repetitive uses of antibiotics lead to antimicrobial drug resistance. Here, 19,20-epoxycytochalasin Q (ECQ) was isolated from endophytic fungus Xylaria sp. BCC 1067 and, its chemical structure was determined via chromatographic and spectral methods. ECQ displayed an antifungal activity with low MIC50 of 410 and 55 mg/l in the model yeast Saccharomyces cerevisiae wild-type and ScΔpdr5 strains, respectively. ECQ was a new inducer and potential substrate of key multi-drug efflux pumps S. cerevisiae ScPdr5 and Candida albicans CaCdr1. ECQ targeted actin filament, disrupting actin dynamics of yeast cells. ECQ also sensitized the ScΔsrv2 mutant, lacking suppressor of RasVal19. Overexpression of ScPDR5 or CaCDR1 genes prevented aggregation of actin and alleviated antifungal effect of ECQ. Additionally, ECQ induced high accumulation of reactive oxygen species, caused plasma membrane leakage and decreased yeast cell survival. Importantly, a discovery of ECQ implied a cellular connection between multi-drug resistance and actin stability, an important determinant of transporter mediated-drug resistance mechanism. Combination of ECQ and antifungal azoles displayed promising drug synergy against S. cerevisiae strains expressing multi-drug transporters, thereby providing potential solution for antifungal therapy and chemotherapeutic application.
Collapse
Affiliation(s)
- Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
8
|
Rasheed M, Battu A, Kaur R. Host-pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Rev Anti Infect Ther 2020; 18:1093-1103. [PMID: 32668993 DOI: 10.1080/14787210.2020.1792773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The opportunistic fungal pathogen Candida glabrata poses a clinical challenge in the successful treatment of invasive Candida infections, owing to its low inherent susceptibility toward azole antifungals and the recent acquisition of coresistance toward azole and echinocandin drugs. Compared to other prevalent Candida bloodstream pathogens, C. glabrata neither exhibits secreted proteolytic activity nor invokes a strong immune response in a variety of host cells and is less virulent. It also does not form true hyphae, and the success of C. glabrata, therefore, as a prevalent human fungal pathogen, appears to be built upon a distinct set of virulence attributes. AREAS COVERED The focus of this review is to outline, in brief, the interaction of C. glabrata with the host, deduced from the knowledge gained from different in vitro, ex vivo, and in vivo model systems. In addition, we briefly discuss the current antifungals, antifungal resistance mechanisms, and the development of new antifungal therapies, along with the available information on the host response. EXPERT OPINION A detailed understanding of stresses, selection pressures and differential immune responses in the presence and absence of antifungals that C. glabrata encounters in varied niches of the host, is required to design effective antifungal therapy.
Collapse
Affiliation(s)
- Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| | - Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education , Manipal, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| |
Collapse
|
9
|
Essential Role for the Phosphatidylinositol 3,5-Bisphosphate Synthesis Complex in Caspofungin Tolerance and Virulence in Candida glabrata. Antimicrob Agents Chemother 2019; 63:AAC.00886-19. [PMID: 31138567 PMCID: PMC6658794 DOI: 10.1128/aac.00886-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022] Open
Abstract
Increasing resistance of the human opportunistic fungal pathogen Candida glabrata toward the echinocandin antifungals, which target the cell wall, is a matter of grave clinical concern. Echinocandin resistance in C. glabrata has primarily been associated with mutations in the β-glucan synthase-encoding genes C. glabrataFKS1 (CgFKS1) and CgFKS2. This notwithstanding, the role of the phosphoinositide signaling in antifungal resistance is just beginning to be deciphered. Increasing resistance of the human opportunistic fungal pathogen Candida glabrata toward the echinocandin antifungals, which target the cell wall, is a matter of grave clinical concern. Echinocandin resistance in C. glabrata has primarily been associated with mutations in the β-glucan synthase-encoding genes C. glabrataFKS1 (CgFKS1) and CgFKS2. This notwithstanding, the role of the phosphoinositide signaling in antifungal resistance is just beginning to be deciphered. The phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance lipid molecule that is pivotal to the intracellular membrane traffic. Here, we demonstrate for the first time that the PI(3,5)P2 kinase CgFab1, along with its activity regulator CgVac7 and the scaffolding protein CgVac14, is required for maintenance of the cell wall chitin content, survival of the cell wall, and caspofungin stress. Further, deletion analyses implicated the PI(3,5)P2 phosphatase CgFig4 in the regulation of PI(3,5)P2 levels and azole and echinocandin tolerance through CgVac14. We also show the localization of the CgFab1 lipid kinase to the vacuole to be independent of the CgVac7, CgVac14, and CgFig4 proteins. Lastly, our data demonstrate an essential requirement for PI(3,5)P2 signaling components, CgFab1, CgVac7, and CgVac14, in the intracellular survival and virulence in C. glabrata. Altogether, our data have yielded key insights into the functions and metabolism of PI(3,5)P2 lipid in the pathogenic yeast C. glabrata. In addition, our data highlight that CgVac7, whose homologs are absent in higher eukaryotes, may represent a promising target for antifungal therapy.
Collapse
|