1
|
Dupuy P, Boudehen YM, Faucher M, Buglino JA, Fay A, Cantaloube S, Grimoire Y, Marcoux J, Levet F, Bettarel L, Voisin B, Rech J, Bouet JY, Saurel O, Sibarita JB, Glickman M, Gutierrez C, Neyrolles O. PacL-organized membrane-associated effluxosomes coordinate multi-metal resistance in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645379. [PMID: 40196583 PMCID: PMC11974823 DOI: 10.1101/2025.03.25.645379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Metal ion homeostasis is crucial for bacterial pathogens to withstand metal-induced stress during infection. However, the mechanisms underlying bacterial resistance to metal stress remain incompletely understood, particularly how bacteria coordinate responses to simultaneous exposure to multiple metals. Here, we uncover a previously unrecognized mechanism by which Mycobacterium tuberculosis , the causative agent of tuberculosis, orchestrates a coordinated response to multi-metal stress. We demonstrate that M. tuberculosis assembles dynamic, membrane-associated platforms, organized by PacL proteins, that confer resistance to multiple metals simultaneously. PacL proteins function as scaffolds, clustering multiple P-type ATPase (P-ATPase) pumps, CtpC, CtpG, and CtpV, into functional complexes we term "effluxosomes". Our findings show that PacL proteins are critical for stabilizing CtpG within membrane-associated clusters, conferring cadmium tolerance, while CtpC serves as a backup, promoting cross-resistance to both zinc and cadmium. Using super-resolution microscopy and single-particle tracking, we elucidate the 3D structure and dynamics of effluxosomes in the mycobacterial membrane. We further demonstrate that conserved residues within the transmembrane domain of PacL proteins are crucial for the assembly of dynamic effluxosomes, which are essential for P-ATPase activity. Additionally, we reveal that PacL1 exhibits metallochaperone activity, binding zinc, cadmium, and copper via a conserved C-terminal motif. Proximity labeling further identifies an extensive PacL1 interaction network, encompassing multiple proteins involved in stress adaptation. Our findings introduce effluxosomes as dynamic, membrane-associated efflux machineries that mediate coordinated multi-metal resistance in M. tuberculosis , providing new insights into bacterial metal homeostasis and unveiling potential antimicrobial targets.
Collapse
|
2
|
Ostrik AA, Grigorov AS, Bocharova IV, Kaprelyants AS, Azhikina TL, Salina EG. Small RNAs Mcr11 and DrrS of Mycobacterium tuberculosis as Possible Regulators of Glycerol Metabolism. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Investigating a putative transcriptional regulatory protein encoded by Rv1719 gene of Mycobacterium tuberculosis. Protein J 2022; 41:424-433. [PMID: 35715720 DOI: 10.1007/s10930-022-10062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, demonstrates immense plasticity with which it adapts to a highly dynamic and hostile host environment. This is facilitated by a web of signalling pathways constantly modulated by a multitude of proteins that regulate the flow of genetic information inside the pathogen. Transcription factors (TFs) belongs to one such family of proteins that modulate the signalling by regulating the abundance of proteins at the transcript level. In the current study, we have characterized the putative transcriptional regulatory protein encoded by the Rv1719 gene of Mycobacterium tuberculosis. This TF belongs to the IclR family of proteins with orthologs found in both bacterial and archaeal species. We cloned the Rv1719 gene into the pET28a expression vector and performed heterologous expression of the recombinant protein with E coli as the host. Further, optimization of the purification protocol by affinity chromatography and characterization of proteins for their functional viability has been demonstrated using various biochemical and/or biophysical approaches. Scale-up of purification yielded approximately 30 mg of ~ 28 kDa protein per litre of culture. In-silico protein domain analysis of Rv1719 protein predicted the presence of the helix-turn-helix (HTH) domain suggesting its ability to bind DNA sequence and modulate transcription; a hallmark of a transcriptional regulatory protein. Further, by performing electrophoretic mobility shift assay (EMSA) we demonstrated that the protein binds to a specific DNA fragment harboring the probable binding site of one of the predicted promoters.
Collapse
|
4
|
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis 2022; 7:tropicalmed7030048. [PMID: 35324595 PMCID: PMC8955876 DOI: 10.3390/tropicalmed7030048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB), caused by bacilli from the Mycobacterium tuberculosis complex, remains a serious global public health problem, representing one of the main causes of death from infectious diseases. About one quarter of the world’s population is infected with Mtb and has a latent TB infection (LTBI). According to the World Health Organization (WHO), an LTBI is characterized by a lasting immune response to Mtb antigens without any TB symptoms. Current LTBI diagnoses and treatments are based on this simplified definition, although an LTBI involves a broad range of conditions, including when Mtb remains in the body in a persistent form and the immune response cannot be detected. The study of LTBIs has progressed in recent years; however, many biological and medical aspects of an LTBI are still under discussion. This review focuses on an LTBI as a broad spectrum of states, both of the human body, and of Mtb cells. The problems of phenotypic insusceptibility, diagnoses, chemoprophylaxis, and the necessity of treatment are discussed. We emphasize the complexity of an LTBI diagnosis and its treatment due to its ambiguous nature. We consider alternative ways of differentiating an LTBI from active TB, as well as predicting TB reactivation based on using mycobacterial “latency antigens” for interferon gamma release assay (IGRA) tests and the transcriptomic analysis of human blood cells.
Collapse
|
5
|
Alvarez-Eraso KLF, Muñoz-Martínez LM, Alzate JF, Barrera LF, Baena A. Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Curr Microbiol 2022; 79:39. [PMID: 34982251 DOI: 10.1007/s00284-021-02733-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.
Collapse
Affiliation(s)
| | | | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
- Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia.
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia.
- Sede de Investigación Universitaria-SIU, Medellín, Colombia.
| |
Collapse
|
6
|
Small RNAs Asserting Big Roles in Mycobacteria. Noncoding RNA 2021; 7:ncrna7040069. [PMID: 34842799 PMCID: PMC8628891 DOI: 10.3390/ncrna7040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with 10.4 million new cases per year reported in the human population. Recent studies on the Mtb transcriptome have revealed the abundance of noncoding RNAs expressed at various phases of mycobacteria growth, in culture, in infected mammalian cells, and in patients. Among these noncoding RNAs are both small RNAs (sRNAs) between 50 and 350 nts in length and smaller RNAs (sncRNA) < 50 nts. In this review, we provide an up-to-date synopsis of the identification, designation, and function of these Mtb-encoded sRNAs and sncRNAs. The methodological advances including RNA sequencing strategies, small RNA antagonists, and locked nucleic acid sequence-specific RNA probes advancing the studies on these small RNA are described. Initial insights into the regulation of the small RNA expression and putative processing enzymes required for their synthesis and function are discussed. There are many open questions remaining about the biological and pathogenic roles of these small non-coding RNAs, and potential research directions needed to define the role of these mycobacterial noncoding RNAs are summarized.
Collapse
|
7
|
Ostrik AA, Azhikina TL, Salina EG. Small Noncoding RNAs and Their Role in the Pathogenesis of Mycobacterium tuberculosis Infection. BIOCHEMISTRY (MOSCOW) 2021; 86:S109-S119. [PMID: 33827403 PMCID: PMC7905965 DOI: 10.1134/s000629792114008x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host–pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.
Collapse
Affiliation(s)
- Albina A Ostrik
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
8
|
Ostrik AA, Salina EG, Skvortsova YV, Grigorov AS, Bychenko OS, Kaprelyants AS, Azhikina TL. Small RNAs of Mycobacterium tuberculosis in Adaptation to Host-Like Stress Conditions in vitro. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Girardin RC, McDonough KA. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of Mycobacterium tuberculosis. Mol Microbiol 2020; 113:504-520. [PMID: 31782837 PMCID: PMC7064933 DOI: 10.1111/mmi.14436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis, must adapt to host-associated environments during infection by modulating gene expression. Small regulatory RNAs (sRNAs) are key regulators of bacterial gene expression, but their roles in Mtb are not well understood. Here, we address the expression and function of the Mtb sRNA Mcr11, which is associated with slow bacterial growth and chronic infections in mice. We found that stable expression of Mcr11 requires multiple factors specific to TB-complex bacteria, including the AbmR transcription factor. Bioinformatic analyses used to predict regulatory targets of Mcr11 identified 7-11 nucleotide regions with potential for direct base-pairing with Mcr11 immediately upstream of Rv3282, fadA3, and lipB. mcr11-dependent regulation of these genes was demonstrated using qRT-PCR and found to be responsive to the presence of fatty acids. Mutation of the putative Mcr11 base-pairing site upstream of lipB in a promoter reporter strain resulted in significant de-repression of lipB expression, similar to that observed in mcr11-deleted Mtb. These studies establish Mcr11's roles in regulating growth and central metabolism in Mtb. Our finding that multiple TB-complex-specific factors are required for production of stable Mcr11 also emphasizes the need to better understand mechanisms of sRNA expression and stability in TB.
Collapse
Affiliation(s)
- Roxie C. Girardin
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
| | - Kathleen A. McDonough
- Department of Biomedical SciencesSchool of Public HealthUniversity at AlbanyAlbanyNY
- Wadsworth Center, New York State Department of HealthAlbanyNY
| |
Collapse
|