1
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Liu S, Wu Z, Yan W, Liu Q, Zhao Y, Gao T, Yang Y, Cao L, Tao R, Li M, Liu L, Zhang Y, Wang T. Regulation of the H1 Type VI Secretion System by the Transcriptional Regulator NfxB in Pseudomonas aeruginosa. Int J Mol Sci 2025; 26:1472. [PMID: 40003937 PMCID: PMC11855083 DOI: 10.3390/ijms26041472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The type VI secretion system (T6SS) is a widely distributed molecular apparatus found in most Gram-negative bacteria. Studies show that T6SSs have functions in bacterial virulence, inter- and intra-bacterial competition, and environmental adaptation. Pseudomonas aeruginosa, an opportunistic pathogen, harbors three T6SS gene clusters that perform diverse roles in clinical infection. Herein, using DNA affinity chromatography of the H1-T6SS promoter, the fluoroquinolone antibiotic resistance regulator NfxB was identified. Further studies demonstrated that NfxB negatively regulates the expression of H1-T6SS by directly binding to its promoter region. T6SS expression and effector secretion are regulated by the fluoroquinolone antibiotic via NfxB, which enhances inter-bacterial competition in the complex bacterial ecology. Meanwhile, the deletion of nfxB alters carbenicillin resistance through an unknown pathway. This study provides new insights into the regulation of T6SS by environmental signals, and it provides data support for antibiotic resistance and inter-bacterial competition due to T6SSs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yani Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Tietao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria. mBio 2023; 14:e0021723. [PMID: 36802165 PMCID: PMC10128002 DOI: 10.1128/mbio.00217-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, Rhizobium sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit. We find that PHZ can enter S. meliloti cells through two distinct promiscuous peptide transporters, BacA and YejABEF, which belong to the SLiPT (SbmA-like peptide transporter) and ABC (ATP-binding cassette) transporter families, respectively. The dual-uptake mode explains the lack of observed resistance acquisition because the simultaneous inactivation of both transporters is necessary for resistance to PHZ. Since both BacA and YejABEF are essential for the development of functional symbiosis of S. meliloti with leguminous plants, the unlikely acquisition of PHZ resistance via the inactivation of these transporters is further disfavored. A whole-genome transposon sequencing screen did not reveal additional genes that can provide strong PHZ resistance when inactivated. However, it was found that the capsular polysaccharide KPS, the novel putative envelope polysaccharide PPP (PHZ-protecting polysaccharide), as well as the peptidoglycan layer jointly contribute to the sensitivity of S. meliloti to PHZ, most likely serving as barriers that reduce the amount of PHZ transported inside the cell. IMPORTANCE Many bacteria produce antimicrobial peptides to eliminate competitors and create an exclusive niche. These peptides act either by membrane disruption or by inhibiting essential intracellular processes. The Achilles' heel of the latter type of antimicrobials is their dependence on transporters to enter susceptible cells. Transporter inactivation results in resistance. Here, we show that a rhizobial ribosome-targeting peptide, phazolicin (PHZ), uses two different transporters, BacA and YejABEF, to enter the cells of a symbiotic bacterium, Sinorhizobium meliloti. This dual-entry mode dramatically reduces the probability of the appearance of PHZ-resistant mutants. Since these transporters are also crucial for S. meliloti symbiotic associations with host plants, their inactivation in natural settings is strongly disfavored, making PHZ an attractive lead for the development of biocontrol agents for agriculture.
Collapse
|
5
|
Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens. Nat Commun 2022; 13:7927. [PMID: 36566216 PMCID: PMC9790009 DOI: 10.1038/s41467-022-35607-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
During growth and division, the bacterial cell wall peptidoglycan (PG) is remodelled, resulting in the liberation of PG muropeptides which are typically reinternalized and recycled. Bacteria belonging to the Rhizobiales and Rhodobacterales orders of the Alphaproteobacteria lack the muropeptide transporter AmpG, despite having other key PG recycling enzymes. Here, we show that an alternative transporter, YejBEF-YepA, takes over this role in the Rhizobiales phytopathogen Agrobacterium tumefaciens. Muropeptide import by YejBEF-YepA governs expression of the β-lactamase AmpC in A. tumefaciens, contributing to β-lactam resistance. However, we show that the absence of YejBEF-YepA causes severe cell wall defects that go far beyond lowered AmpC activity. Thus, contrary to previously established Gram-negative models, PG recycling is vital for cell wall integrity in A. tumefaciens. YepA is widespread in the Rhizobiales and Rhodobacterales, suggesting that YejBEF-YepA-mediated PG recycling could represent an important but overlooked aspect of cell wall biology in these bacteria.
Collapse
|
6
|
Perry EK, Meirelles LA, Newman DK. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat Rev Microbiol 2022; 20:129-142. [PMID: 34531577 PMCID: PMC8857043 DOI: 10.1038/s41579-021-00620-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Secondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes. In this Review, we explore which types of secondary metabolite alter antimicrobial susceptibility, as well as how and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric pathogens either generate themselves or are exposed to from their neighbours, and the nuanced impacts these molecules can have on tolerance and resistance to certain antibiotics.
Collapse
Affiliation(s)
- Elena K Perry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Prevalence and correlates of phenazine resistance in culturable bacteria from a dryland wheat field. Appl Environ Microbiol 2022; 88:e0232021. [PMID: 35138927 DOI: 10.1128/aem.02320-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenazines are a class of bacterially-produced redox-active natural antibiotics that have demonstrated potential as a sustainable alternative to traditional pesticides for the biocontrol of fungal crop diseases. However, the prevalence of bacterial resistance to agriculturally-relevant phenazines is poorly understood, limiting both the understanding of how these molecules might shape rhizosphere bacterial communities and the ability to perform risk assessment for off-target effects. Here, we describe profiles of susceptibility to the antifungal agent phenazine-1-carboxylic acid (PCA) across more than 100 bacterial strains isolated from a wheat field where PCA producers are indigenous and abundant. We find that Gram-positive bacteria are typically more sensitive to PCA than Gram-negative bacteria, but that there is also significant variability in susceptibility both within and across phyla. Phenazine-resistant strains are more likely to be isolated from the wheat rhizosphere, where PCA producers are also more abundant, compared to bulk soil. Furthermore, PCA toxicity is pH-dependent for most susceptible strains and broadly correlates with PCA reduction rates, suggesting that uptake and redox-cycling are important determinants of phenazine toxicity. Our results shed light on which classes of bacteria are most likely to be susceptible to phenazine toxicity in acidic or neutral soils. In addition, the taxonomic and phenotypic diversity of our strain collection represents a valuable resource for future studies on the role of natural antibiotics in shaping wheat rhizosphere communities. Importance Microbial communities contribute to crop health in important ways. For example, phenazine metabolites are a class of redox-active molecules made by diverse soil bacteria that underpin the biocontrol of wheat and other crops. Their physiological functions are nuanced: in some contexts they are toxic, in others, beneficial. While much is known about phenazine production and the effect of phenazines on producing strains, our ability to predict how phenazines might shape the composition of environmental microbial communities is poorly constrained; that phenazine prevalence in the rhizosphere is predicted to increase in arid soils as the climate changes provides an impetus for further study. As a step towards gaining a predictive understanding of phenazine-linked microbial ecology, we document the effects of phenazines on diverse bacteria that were co-isolated from a wheat rhizosphere and identify conditions and phenotypes that correlate with how a strain will respond to phenazines.
Collapse
|
8
|
Soil bacteria protect fungi from phenazines by acting as toxin sponges. Curr Biol 2022; 32:275-288.e5. [PMID: 34813731 PMCID: PMC8792240 DOI: 10.1016/j.cub.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/12/2021] [Accepted: 11/01/2021] [Indexed: 01/26/2023]
Abstract
Many environmentally and clinically important fungi are sensitive to toxic, bacterially produced, redox-active molecules called phenazines. Despite being vulnerable to phenazine assault, fungi inhabit microbial communities that contain phenazine producers. Because many fungi cannot withstand phenazine challenge but some bacterial species can, we hypothesized that bacterial partners may protect fungi in phenazine-replete environments. From a single soil sample, we were able to co-isolate several such physically associated pairings. We discovered the novel species Paraburkholderia edwinii and demonstrated it can protect a co-isolated Aspergillus species from phenazine-1-carboxylic acid (PCA) by sequestering it, acting as a toxin sponge; in turn, it also gains protection. When challenged with PCA, P. edwinii changes its morphology, forming aggregates within the growing fungal colony. Further, the fungal partner triggers P. edwinii to sequester PCA and maintains conditions that limit PCA toxicity by promoting an anoxic and highly reducing environment. A mutagenic screen of P. edwinii revealed this protective program depends on the stress-inducible transcriptional repressor HrcA. We show that one relevant stressor in response to PCA challenge is fungal acidification and that acid stress causes P. edwinii to behave as though the fungus were present. Finally, we reveal this phenomenon as widespread among Paraburkholderia with moderate specificity among bacterial and fungal partners, including plant and human pathogens. Our discovery suggests a common mechanism by which fungi can gain access to phenazine-replete environments and provides a tractable model system for its study. These results have implications for how microbial communities in the rhizosphere as well as in plant and human infection sites negotiate community membership via a chemical dialectic.
Collapse
|
9
|
Gualdi S, Agnoli K, Vitale A, Higgins S, Eberl L. Identification of genes required for gold and silver tolerance in Burkholderia cenocepacia H111 by transposon sequencing. Environ Microbiol 2021; 24:737-751. [PMID: 33734565 DOI: 10.1111/1462-2920.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.
Collapse
Affiliation(s)
- Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Steven Higgins
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| |
Collapse
|
10
|
Dar D, Thomashow LS, Weller DM, Newman DK. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife 2020; 9:59726. [PMID: 32930660 PMCID: PMC7591250 DOI: 10.7554/elife.59726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
11
|
Moscoviz R, Quéméner EDL, Trably E, Bernet N, Hamelin J. Novel Outlook in Microbial Ecology: Nonmutualistic Interspecies Electron Transfer. Trends Microbiol 2020; 28:245-253. [PMID: 32155432 DOI: 10.1016/j.tim.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in microbial electrochemical technologies have revealed the existence of numerous and highly diverse microorganisms able to exchange electrons with electrodes. This diversity could reflect the capacity of microorganisms to release and/or retrieve electrons with each other in natural environments. So far, this interspecies electron transfer has been studied with a special focus on syntrophy and was successfully demonstrated for several couples of species. In this article we argue that electron exchange between microbes exists beyond syntrophy or mutualism and could also promote competitive and even parasitic behaviour. Based on three interesting case studies identified from the literature, we also highlight that such nonmutualistic interactions could be widespread and of particular significance for the survival of pathogens or the shaping of complex microbial communities.
Collapse
Affiliation(s)
- Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), Le Pecq, France.
| | | | - Eric Trably
- INRAE, Université Montpellier, LBE, Narbonne, France
| | | | | |
Collapse
|
12
|
Heat-shock proteases promote survival of Pseudomonas aeruginosa during growth arrest. Proc Natl Acad Sci U S A 2020; 117:4358-4367. [PMID: 32029587 DOI: 10.1073/pnas.1912082117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
When nutrients in their environment are exhausted, bacterial cells become arrested for growth. During these periods, a primary challenge is maintaining cellular integrity with a reduced capacity for renewal or repair. Here, we show that the heat-shock protease FtsH is generally required for growth arrest survival of Pseudomonas aeruginosa, and that this requirement is independent of a role in regulating lipopolysaccharide synthesis, as has been suggested for Escherichia coli We find that ftsH interacts with diverse genes during growth and overlaps functionally with the other heat-shock protease-encoding genes hslVU, lon, and clpXP to promote survival during growth arrest. Systematic deletion of the heat-shock protease-encoding genes reveals that the proteases function hierarchically during growth arrest, with FtsH and ClpXP having primary, nonredundant roles, and HslVU and Lon deploying a secondary response to aging stress. This hierarchy is partially conserved during growth at high temperature and alkaline pH, suggesting that heat, pH, and growth arrest effectively impose a similar type of proteostatic stress at the cellular level. In support of this inference, heat and growth arrest act synergistically to kill cells, and protein aggregation appears to occur more rapidly in protease mutants during growth arrest and correlates with the onset of cell death. Our findings suggest that protein aggregation is a major driver of aging and cell death during growth arrest, and that coordinated activity of the heat-shock response is required to ensure ongoing protein quality control in the absence of growth.
Collapse
|