1
|
Richter F, Calonne-Salmon M, van der Heijden MGA, Declerck S, Stanley CE. AMF-SporeChip provides new insights into arbuscular mycorrhizal fungal asymbiotic hyphal growth dynamics at the cellular level. LAB ON A CHIP 2024; 24:1930-1946. [PMID: 38416560 PMCID: PMC10964749 DOI: 10.1039/d3lc00859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (i.e., physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the AMF-SporeChip - to visualise the foraging behaviour of germinating Rhizophagus and Gigaspora spores and confront asymbiotic hyphae with physical obstacles. In combination with timelapse microscopy, the fungi could be examined at the cellular level and in real-time. The AMF-SporeChip allowed us to acquire movies with unprecedented visual clarity and therefore identify various exploration strategies of AMF asymbiotic hyphae. We witnessed tip-to-tip and tip-to-side hyphal anastomosis formation. Anastomosis involved directed hyphal growth in a "stop-and-go" manner, yielding visual evidence of pre-anastomosis signalling and decision-making. Remarkably, we also revealed a so-far undescribed reversible cytoplasmic retraction, including the formation of up to 8 septa upon retraction, as part of a highly dynamic space navigation, probably evolved to optimise foraging efficiency. Our findings demonstrated how AMF employ an intricate mechanism of space searching, involving reversible cytoplasmic retraction, branching and directional changes. In turn, the AMF-SporeChip is expected to open many future frontiers for AMF research.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Marcel G A van der Heijden
- Agroecology and Environment Research Division, Agroscope, 8046 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Trepa M, Sułkowska-Ziaja K, Kała K, Muszyńska B. Therapeutic Potential of Fungal Terpenes and Terpenoids: Application in Skin Diseases. Molecules 2024; 29:1183. [PMID: 38474692 DOI: 10.3390/molecules29051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Terpenes and their derivatives comprise a diverse group of natural compounds with versatile medicinal properties. This article elucidates the general characteristics of fungal terpenes and terpenoids, encompassing their structure and biogenesis. The focal point of this work involves a comprehensive overview of these compounds, highlighting their therapeutic properties, mechanisms of action, and potential applications in treating specific skin conditions. Numerous isolated terpenes and terpenoids have demonstrated noteworthy anti-inflammatory and anti-microbial effects, rivalling or surpassing the efficacy of currently employed treatments for inflammation or skin infections. Due to their well-documented antioxidant and anti-cancer attributes, these compounds exhibit promise in both preventing and treating skin cancer. Terpenes and terpenoids sourced from fungi display the capability to inhibit tyrosinase, suggesting potential applications in addressing skin pigmentation disorders and cancers linked to melanogenesis dysfunctions. This paper further disseminates the findings of clinical and in vivo research on fungal terpenes and terpenoids conducted thus far.
Collapse
Affiliation(s)
- Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Collegium Medicum, Jagiellonian University, 16 Św. Łazarza St., 30-530 Kraków, Poland
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland
| |
Collapse
|
3
|
Correia J, Borges A, Simões M, Simões LC. Beyond Penicillin: The Potential of Filamentous Fungi for Drug Discovery in the Age of Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1250. [PMID: 37627670 PMCID: PMC10451904 DOI: 10.3390/antibiotics12081250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics are a staple in current medicine for the therapy of infectious diseases. However, their extensive use and misuse, combined with the high adaptability of bacteria, has dangerously increased the incidence of multi-drug-resistant (MDR) bacteria. This makes the treatment of infections challenging, especially when MDR bacteria form biofilms. The most recent antibiotics entering the market have very similar modes of action to the existing ones, so bacteria rapidly catch up to those as well. As such, it is very important to adopt effective measures to avoid the development of antibiotic resistance by pathogenic bacteria, but also to perform bioprospecting of new molecules from diverse sources to expand the arsenal of drugs that are available to fight these infectious bacteria. Filamentous fungi have a large and vastly unexplored secondary metabolome and are rich in bioactive molecules that can be potential novel antimicrobial drugs. Their production can be challenging, as the associated biosynthetic pathways may not be active under standard culture conditions. New techniques involving metabolic and genetic engineering can help boost antibiotic production. This study aims to review the bioprospection of fungi to produce new drugs to face the growing problem of MDR bacteria and biofilm-associated infections.
Collapse
Affiliation(s)
- João Correia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal; (J.C.); (A.B.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Seibold PS, Lawrinowitz S, Raztsou I, Gressler M, Arndt HD, Stallforth P, Hoffmeister D. Bifurcate evolution of quinone synthetases in basidiomycetes. Fungal Biol Biotechnol 2023; 10:14. [PMID: 37400920 PMCID: PMC10316625 DOI: 10.1186/s40694-023-00162-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.
Collapse
Affiliation(s)
- Paula Sophie Seibold
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Stefanie Lawrinowitz
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Ihar Raztsou
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Pierre Stallforth
- Department Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
5
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
6
|
Chen L, Champramary S, Sahu N, Indic B, Szűcs A, Nagy G, Maróti G, Pap B, Languar O, Vágvölgyi C, Nagy LG, Kredics L, Sipos G. Dual RNA-Seq Profiling Unveils Mycoparasitic Activities of Trichoderma atroviride against Haploid Armillaria ostoyae in Antagonistic Interaction Assays. Microbiol Spectr 2023; 11:e0462622. [PMID: 37140425 PMCID: PMC10269595 DOI: 10.1128/spectrum.04626-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Armillaria ostoyae, a species among the destructive forest pathogens from the genus Armillaria, causes root rot disease on woody plants worldwide. Efficient control measures to limit the growth and impact of this severe underground pathogen are under investigation. In a previous study, a new soilborne fungal isolate, Trichoderma atroviride SZMC 24276 (TA), exhibited high antagonistic efficacy, which suggested that it could be utilized as a biocontrol agent. The dual culture assay results indicated that the haploid A. ostoyae-derivative SZMC 23085 (AO) (C18/9) is highly susceptible to the mycelial invasion of TA. In the present study, we analyzed the transcriptome of AO and that of TA in in vitro dual culture assays to test the molecular arsenal of Trichoderma antagonism and the defense mechanisms of Armillaria. We conducted time-course analysis and functional annotation and analyzed enriched pathways and differentially expressed genes including biocontrol-related candidate genes from TA and defense-related candidate genes from AO. The results indicated that TA deployed several biocontrol mechanisms when confronted with AO. In response, AO initiated multiple defense mechanisms to protect against the fungal attack. To our knowledge, the present study offers the first transcriptome analysis of a biocontrol fungus attacking AO. Overall, this study provides insights that aid the further exploration of plant pathogen-biocontrol agent interaction mechanisms. IMPORTANCE Armillaria species can survive for decades in the soil on dead woody debris, develop rapidly under favorable conditions, and harmfully infect newly planted forests. Our previous study found Trichoderma atroviride to be highly effective in controlling Armillaria growth; therefore, our current work explored the molecular mechanisms that might play a key role in Trichoderma-Armillaria interactions. Direct confrontation assays combined with time course-based dual transcriptome analysis provided a reliable system for uncovering the interactive molecular dynamics between the fungal plant pathogen and its mycoparasitic partner. Furthermore, using a haploid Armillaria isolate allowed us to survey the deadly prey-invading activities of the mycoparasite and the ultimate defensive strategies of its prey. Our current study provides detailed insights into the essential genes and mechanisms involved in Armillaria defense against Trichoderma and the genes potentially involved in the efficiency of Trichoderma to control Armillaria. In addition, using a sensitive haploid Armillaria strain (C18/9), with its complete genome data already available, also offers the opportunity to test possible variable molecular responses of Armillaria ostoyae toward diverse Trichoderma isolates with various biocontrol abilities. Initial molecular tests of the dual interactions may soon help to develop a targeted biocontrol intervention with mycoparasites against plant pathogens.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Attila Szűcs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Bernadett Pap
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Omar Languar
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, Hungary
| |
Collapse
|
7
|
Nosenko T, Zimmer I, Ghirardo A, Köllner TG, Weber B, Polle A, Rosenkranz M, Schnitzler JP. Predicting functions of putative fungal sesquiterpene synthase genes based on multiomics data analysis. Fungal Genet Biol 2023; 165:103779. [PMID: 36706978 DOI: 10.1016/j.fgb.2023.103779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Sesquiterpenes (STs) are secondary metabolites, which mediate biotic interactions between different organisms. Predicting the species-specific ST repertoires can contribute to deciphering the language of communication between organisms of the same or different species. High biochemical plasticity and catalytic promiscuity of sesquiterpene synthases (STSs), however, challenge the homology-based prediction of the STS functions. Using integrated analyses of genomic, transcriptomic, volatilomic, and metabolomic data, we predict product profiles for 116 out of 146 putative STS genes identified in the genomes of 30 fungal species from different trophic groups. Our prediction method is based on the observation that STSs encoded by genes closely related phylogenetically are likely to share the initial enzymatic reactions of the ST biosynthesis pathways and, therefore, produce STs via the same reaction route. The classification by reaction routes allows to assign STs known to be emitted by a particular species to the putative STS genes from this species. Gene expression information helps to further specify these ST-to-STS assignments. Validation of the computational predictions of the STS functions using both in silico and experimental approaches shows that integrated multiomic analyses are able to correctly link cyclic STs of non-cadalane type to genes. In the process of the experimental validation, we characterized catalytic properties of several putative STS genes from the mycorrhizal fungus Laccaria bicolor. We show that the STSs encoded by the L.bicolor mycorrhiza-induced genes emit either nerolidol or α-cuprenene and α-cuparene, and discuss the possible roles of these STs in the mycorrhiza formation.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany.
| | - Ina Zimmer
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Baris Weber
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
9
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
10
|
Cao R, Wu X, Wang Q, Qi P, Zhang Y, Wang L, Sun C. Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS OMEGA 2022; 7:7229-7239. [PMID: 35252713 PMCID: PMC8892675 DOI: 10.1021/acsomega.1c06792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain largely untapped. Therefore, we provide a modeling method to obtain specific terpene synthases. Aided by bioinformatics analysis, three γ-cadinene enzymes from Ganoderma lucidum and Ganoderma sinensis were accurately predicted and identified experimentally. Based on the highly conserved amino motifs of the characterized γ-cadinene enzymes, the enzyme was reassembled as model 1. Using this model as a template, 67 homologous sequences of the γ-cadinene enzyme were screened from the National Center for Biotechnology Information (NCBI). According to the 67 sequences, the same gene structure, and similar conserved motifs to model 1, the γ-cadinene enzyme model was further improved by the same construction method and renamed as model 2. The results of bioinformatics analysis show that the conservative regions of models 1 and 2 are highly similar. In addition, five of these sequences were verified, 100% of which were γ-cadinene enzymes. The accuracy of the prediction ability of the γ-cadinene enzyme model was proven. In the same way, we also reanalyzed the identified Δ6-protoilludene enzymes in fungi and (-)-α-bisabolol enzymes in plants, all of which have their own unique conserved motifs. Our research method is expected to be used to study other terpenoid synthases with a similar or the same function in basidiomycetes, ascomycetes, bacteria, and plants and to provide rich enzyme resources.
Collapse
Affiliation(s)
- Rui Cao
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xinlong Wu
- College
of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Qi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Pengyan Qi
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuna Zhang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lizhi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chao Sun
- Institute
of Medicinal Plant Development, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
12
|
Coprinopsis cinerea uses laccase Lcc9 as a defense strategy to eliminate oxidative stress during fungal-fungal interactions. Appl Environ Microbiol 2021; 88:e0176021. [PMID: 34669425 DOI: 10.1128/aem.01760-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequently, laccases are triggered during fungal cocultivation for overexpression. The function of these activated laccases during coculture has not been clarified. Previously, we reported that Gongronella sp. w5 (w5) (Mucoromycota, Mucoromycetes) specifically triggered the laccase Lcc9 overexpression in Coprinopsis cinerea (Basidiomycota, Agaricomycetes). To systematically analyze the function of the overexpressed laccase during fungal interaction, C. cinerea mycelia before and after the initial Lcc9 overexpression were chosen for transcriptome analysis. Results showed that accompanied by specific utilization of fructose as carbohydrate substrate, oxidative stress derived from antagonistic compounds secreted by w5 appears to be a signal critical for laccase production in C. cinerea. Reactive oxygen species (ROS) decrease in the C. cinerea wild-type strain followed the increase in laccase production and then, lcc9 transcription and laccase activity stopped. By comparison, increased H2O2 content and mycelial ROS levels were observed during the entire cocultivation in lcc9 silenced C. cinerea strains. Moreover, lcc9 silencing slowed down the C. cinerea mycelial growth, affected hyphal morphology, and decreased the asexual sporulation in coculture. Our results showed that intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Lcc9 takes part as a defense strategy to eliminate oxidative stress during the interspecific interaction with w5. Importance: The overproduction of laccase during interspecific fungal interactions is notoriously known. However, the exact role of the up-regulated laccases remains underexplored. Based on comparative transcriptomic analysis of C. cinerea and gene silencing of laccase Lcc9, here we show that oxidative stress derived from antagonistic compounds secreted by Gongronella sp. w5 was a signal critical for laccase Lcc9 production in Coprinopsis cinerea. Intracellular ROS acted as signal molecules to stimulate defense responses by C. cinerea with the expression of oxidative stress response regulator Skn7 and various detoxification proteins. Ultimately, Lcc9 takes part as a defense strategy to eliminate oxidative stress and help cell growth and development during the interspecific interaction with Gongronella sp. w5. These findings deepened our understanding of fungal interactions in their natural population and communities.
Collapse
|
13
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
14
|
Junier P, Cailleau G, Palmieri I, Vallotton C, Trautschold OC, Junier T, Paul C, Bregnard D, Palmieri F, Estoppey A, Buffi M, Lohberger A, Robinson A, Kelliher JM, Davenport K, House GL, Morales D, Gallegos-Graves LV, Dichosa AEK, Lupini S, Nguyen HN, Young JD, Rodrigues DF, Parra-Vasquez ANG, Bindschedler S, Chain PSG. Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiol Ecol 2021; 97:6095729. [PMID: 33440006 PMCID: PMC7878174 DOI: 10.1093/femsec/fiab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria–fungi interactions (BFIs) are essential in ecosystem functioning. These interactions are modulated not only by local nutritional conditions but also by the physicochemical constraints and 3D structure of the environmental niche. In soils, the unsaturated and complex nature of the substrate restricts the dispersal and activity of bacteria. Under unsaturated conditions, some bacteria engage with filamentous fungi in an interaction (fungal highways) in which they use fungal hyphae to disperse. Based on a previous experimental device to enrich pairs of organisms engaging in this interaction in soils, we present here the design and validation of a modified version of this sampling system constructed using additive printing. The 3D printed devices were tested using a novel application in which a target fungus, the common coprophilous fungus Coprinopsis cinerea, was used as bait to recruit and identify bacterial partners using its mycelium for dispersal. Bacteria of the genera Pseudomonas, Sphingobacterium and Stenotrophomonas were highly enriched in association with C. cinerea. Developing and producing these new easy-to-use tools to investigate how bacteria overcome dispersal limitations in cooperation with fungi is important to unravel the mechanisms by which BFIs affect processes at an ecosystem scale in soils and other unsaturated environments.
Collapse
Affiliation(s)
- Pilar Junier
- Corresponding author: Rue Emile-Argand 9, CH-2000, Neuchatel, Switzerland. Tel: +41327182244; Fax: +41327183001; E-mail: ; MS-M888, TA43-0001, SM30 Bikini Atoll Road, Los Alamos 87545 USA
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Ilona Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Celine Vallotton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Olivia C Trautschold
- Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH, 1015, Lausanne, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Danae Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Andrea Lohberger
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Aaron Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Julia M Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Karen Davenport
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Geoffrey L House
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Demosthenes Morales
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | | | - Armand E K Dichosa
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Simone Lupini
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Hang N Nguyen
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Debora F Rodrigues
- Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | | | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH, 2000, Neuchâtel, Switzerland
| | - Patrick S G Chain
- Corresponding author: Rue Emile-Argand 9, CH-2000, Neuchatel, Switzerland. Tel: +41327182244; Fax: +41327183001; E-mail: ; MS-M888, TA43-0001, SM30 Bikini Atoll Road, Los Alamos 87545 USA
| |
Collapse
|
15
|
Gimeno A, Stanley CE, Ngamenie Z, Hsung MH, Walder F, Schmieder SS, Bindschedler S, Junier P, Keller B, Vogelgsang S. A versatile microfluidic platform measures hyphal interactions between Fusarium graminearum and Clonostachys rosea in real-time. Commun Biol 2021; 4:262. [PMID: 33637874 PMCID: PMC7910300 DOI: 10.1038/s42003-021-01767-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.
Collapse
Affiliation(s)
- Alejandro Gimeno
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Claire E Stanley
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland.
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| | - Zacharie Ngamenie
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
| | - Ming-Hui Hsung
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Florian Walder
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Stefanie S Schmieder
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Beat Keller
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Susanne Vogelgsang
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland.
| |
Collapse
|
16
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
17
|
Lee J, Hilgers F, Loeschke A, Jaeger KE, Feldbrügge M. Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids. Front Microbiol 2020; 11:1655. [PMID: 32849341 PMCID: PMC7396576 DOI: 10.3389/fmicb.2020.01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. In particular, higher basidiomycetes possess a versatile biosynthetic repertoire for these bioactive compounds. To date, only a few microbial production systems for fungal sesquiterpenoids have been established. Here, we introduce Ustilago maydis as a novel production host. This model fungus is a close relative of higher basidiomycetes. It offers the advantage of metabolic compatibility and potential tolerance for substances toxic to other microorganisms. We successfully implemented a heterologous pathway to produce the carotenoid lycopene that served as a straightforward read-out for precursor pathway engineering. Overexpressing genes encoding enzymes of the mevalonate pathway resulted in increased lycopene levels. Verifying the subcellular localization of the relevant enzymes revealed that initial metabolic reactions might take place in peroxisomes: despite the absence of a canonical peroxisomal targeting sequence, acetyl-CoA C-acetyltransferase Aat1 localized to peroxisomes. By expressing the plant (+)-valencene synthase CnVS and the basidiomycete sesquiterpenoid synthase Cop6, we succeeded in producing (+)-valencene and α-cuprenene, respectively. Importantly, the fungal compound yielded about tenfold higher titers in comparison to the plant substance. This proof of principle demonstrates that U. maydis can serve as promising novel chassis for the production of terpenoids.
Collapse
Affiliation(s)
- Jungho Lee
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabienne Hilgers
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschke
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Feldbrügge
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
19
|
Collemare J, Seidl MF. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev 2019; 43:591-607. [PMID: 31301226 PMCID: PMC8038932 DOI: 10.1093/femsre/fuz018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Michael F Seidl
- Corresponding author: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. E-mail: ; Present address: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|