1
|
Cosi V, Jung J, Popella L, Ponath F, Ghosh C, Barquist L, Vogel J. An antisense oligomer conjugate with unpredicted bactericidal activity against Fusobacterium nucleatum. mBio 2025:e0052425. [PMID: 40298409 DOI: 10.1128/mbio.00524-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Fusobacteria are commensal members of the oral microbiome that can spread from their primary niche and colonize distal sites in the human body. Their enrichment in colorectal and breast cancer tissue has been associated with tumor growth, metastasis, and chemotherapeutic resistance. The use of non-selective antibiotics to remove fusobacteria impairs tumor progression, but prolonged application causes side effects, such as gastrointestinal problems and dysbiosis. Species-specific antisense antibiotics based on peptide nucleic acid (PNA) have shown efficacy in many gram-negative species, suggesting that antisense PNAs may also enable a tailored depletion of fusobacteria. Here, we have investigated the antibacterial potential of cell-penetrating peptide (CPP)-PNA conjugates targeting the mRNA of putative essential genes in Fusobacterium nucleatum. Unexpectedly, we observed no growth inhibition with any of the target-specific PNAs but identified a non-targeting control CPP-PNA [FUS79, (RXR)4XB-GACATAATTGT] as a potent growth inhibitor of F. nucleatum. Our data suggest that the CPP and specific sequence features of FUS79 are responsible for its activity, rather than an antisense effect. Interestingly, FUS79 also inhibits the growth of five additional fusobacterial strains but not of F. nucleatum subsp. vincentii (FNV). RNA-seq analysis indicates that FUS79 induces a membrane stress response in a vulnerable F. nucleatum strain but not in FNV. Collectively, our attempt at developing antisense antibiotics for fusobacteria discovers a potent growth inhibitor, whose bactericidal effect appears independent of target-specific mRNA inhibition.IMPORTANCEEnrichment of F. nucleatum at cancer sites is associated with increased tumor growth and metastasis. Antibiotic treatment to remove the bacteria was shown to change the course of cancer progression. Here, we explore first steps to establish peptide nucleic acids (PNAs) as specific antisense antibiotics, thereby laying the foundation for further development of antisense technology in fusobacteria. Although the CPP-PNA FUS79 was initially designed as a control, we observed that the compound was bactericidal for specific fusobacterial strains. Our results suggest that FUS79 might be able to selectively deplete fusobacterial strains from bacterial communities, offering a new perspective on fusobacterial removal at the tumor site.
Collapse
Affiliation(s)
- Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jakob Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Linda Popella
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
2
|
Corver J, Claushuis B, Shamorkina TM, de Ru AH, van Leeuwen MM, Hensbergen PJ, Smits WK. Proteolytic activity of surface-exposed HtrA determines its expression level and is needed to survive acidic conditions in Clostridioides difficile. Mol Microbiol 2024; 122:413-428. [PMID: 39081042 DOI: 10.1111/mmi.15300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 10/17/2024]
Abstract
To survive in the host, pathogenic bacteria need to be able to react to the unfavorable conditions that they encounter, like low pH, elevated temperatures, antimicrobial peptides and many more. These conditions may lead to unfolding of envelope proteins and this may be lethal. One of the mechanisms through which bacteria are able to survive these conditions is through the protease/foldase activity of the high temperature requirement A (HtrA) protein. The gut pathogen Clostridioides difficile encodes one HtrA homolog that is predicted to contain a membrane anchor and a single PDZ domain. The function of HtrA in C. difficile is hitherto unknown but previous work has shown that an insertional mutant of htrA displayed elevated toxin levels, less sporulation and decreased binding to target cells. Here, we show that HtrA is membrane associated and localized on the surface of C. difficile and characterize the requirements for proteolytic activity of recombinant soluble HtrA. In addition, we show that the level of HtrA in the bacteria heavily depends on its proteolytic activity. Finally, we show that proteolytic activity of HtrA is required for survival under acidic conditions.
Collapse
Affiliation(s)
- Jeroen Corver
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Claushuis
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Tatiana M Shamorkina
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Merle M van Leeuwen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wiep Klaas Smits
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Chen Z, Niu C, Wei L, Huang Z, Ran S. Genome-wide analysis of acid tolerance genes of Enterococcus faecalis with RNA-seq and Tn-seq. BMC Genomics 2024; 25:261. [PMID: 38454321 PMCID: PMC10921730 DOI: 10.1186/s12864-024-10162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.
Collapse
Affiliation(s)
- Zhanyi Chen
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Nucleic acid drug Research and Development Institute, CSPC, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
4
|
Camp AH, Ellermeier CD. From regulation to ruin: a rogue sigma factor causes cell death in Bacillus subtilis. J Bacteriol 2023; 205:e0020323. [PMID: 37795990 PMCID: PMC10601719 DOI: 10.1128/jb.00203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
A rogue, plasmid-encoded sigma factor that kills Bacillus subtilis is the focus of a new study by A. T. Burton, D. Pospíšilová, P. Sudzinová, E. V. Snider, A. M. Burrage, L. Krásný, and D. B. Kearns (J Bacteriol 205:e00112-23, 2023, https://doi.org/10.1128/jb.00112-23). The authors demonstrate that SigN is toxic in its own right, causing cell death by potently outcompeting the housekeeping sigma factor for access to RNA polymerase.
Collapse
Affiliation(s)
- Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
6
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
7
|
Liu P, Dong X, Cao X, Xie Q, Huang X, Jiang J, Dai H, Tang Z, Lin Y, Feng S, Luo K. Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion. Microbiol Spectr 2023; 11:e0451522. [PMID: 36749047 PMCID: PMC10100823 DOI: 10.1128/spectrum.04515-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The emergence of multidrug-resistant Escherichia coli, which poses a major threat to public health, has motivated the development of numerous alternative antimicrobials. Lysins are bacteriophage- and bacterium-derived peptidoglycan hydrolases that represent a new antibiotic treatment targeting bacterial cell walls. However, the bactericidal effect of native lysins on Gram-negative bacteria is restricted by the presence of an outer membrane. Here, we first evaluated the antibacterial activity of three Campylobacter-derived lysins (Clysins) against E. coli. To improve their transmembrane ability and antibacterial activities, six engineered Clysins were constructed by fusing with the translocation and receptor-binding (TRB) domains from two types of colicins (colicin A [TRBA] and colicin K [TRBK]), and their biological activities were determined. Notably, engineered lysin TRBK-Cly02 exhibited the highest bactericidal activity against the E. coli BL21 strain, with a reduction of 6.22 ± 0.34 log units of cells at a concentration of 60.1 μg/mL, and formed an observable inhibition zone even at a dose of 6.01 μg. Moreover, TRBK-Cly02 killed E. coli dose dependently and exhibited the strongest bactericidal activity at pH 6. It also exhibited potential bioactivity against multidrug-resistant E. coli clinical isolates. In summary, this study identified three lysins from Campylobacter strains against E. coli, and the enhancement of their antibacterial activities by TRB domains fusion may allow them to be developed as potential alternatives to antibiotics. IMPORTANCE Three lysins from Campylobacter, namely, Clysins, were investigated, and their antibacterial activities against E. coli were determined for the first time. To overcome the restriction of the outer membrane of Gram-negative bacteria, we combined the TRB domains of colicins with these Clysins. Moreover, we discovered that the Clysins fused with TRB domains from colicin K (TRBK) killed E. coli more effectively, and this provides a new foundation for the development of novel bioengineered lysins by employing TRBK constructs that target outer membrane receptor/transport systems. One of the designed lysins, TRBK-Cly02, exhibited potent bactericidal efficacy against E. coli strains and may be used for control of multidrug-resistant clinical isolates. The results suggest that TRBK-Cly02 can be considered a potential antibacterial agent against pathogenic E. coli.
Collapse
Affiliation(s)
- Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zheng Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Parga A, Manoil D, Brundin M, Otero A, Belibasakis GN. Gram-negative quorum sensing signalling enhances biofilm formation and virulence traits in gram-positive pathogen Enterococcus faecalis. J Oral Microbiol 2023; 15:2208901. [PMID: 37187675 PMCID: PMC10177678 DOI: 10.1080/20002297.2023.2208901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Acyl-homoserine lactones (AHLs) are typical quorum-sensing molecules of gram-negative bacteria. Recent evidence suggests that AHLs may also affect gram-positives, although knowledge of these interactions remains scarce. Here, we assessed the effect of AHLs on biofilm formation and transcriptional regulations in the gram-positive Enterococcus faecalis. Five E. faecalis strains were investigated herein. Crystal violet was employed to quantify the biomass formed, and confocal microscopy in combination with SYTO9/PI allowed the visualisation of biofilms' structure. The differential expression of 10 genes involved in quorum-sensing, biofilm formation and stress responses was evaluated using reverse-transcription-qPCR. The AHL exposure significantly increased biofilm production in strain ATCC 29212 and two isolates from infected dental roots, UmID4 and UmID5. In strains ATCC 29212 and UmID7, AHLs up-regulated the quorum-sensing genes (fsrC, cylA), the adhesins ace, efaA and asa1, together with the glycosyltransferase epaQ. In strain UmID7, AHL exposure additionally up-regulated two membrane-stress response genes (σV, groEL) associated with increased stress-tolerance and virulence. Altogether, our results demonstrate that AHLs promote biofilm formation and up-regulate a transcriptional network involved in virulence and stress tolerance in several E. faecalis strains. These data provide yet-unreported insights into E. faecalis biofilm responses to AHLs, a family of molecules long-considered the monopole of gram-negative signalling.
Collapse
Affiliation(s)
- Ana Parga
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Division of cariology and endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CONTACT Daniel Manoil Division of cariology and endodontics, University Clinics of Dental Medicine, Michel-Servet 1, Geneva1205, Switzerland
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, Umeå, Sweden
| | - Ana Otero
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
9
|
Ponath F, Zhu Y, Cosi V, Vogel J. Expanding the genetic toolkit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum. Proc Natl Acad Sci U S A 2022; 119:e2201460119. [PMID: 36161895 PMCID: PMC9546586 DOI: 10.1073/pnas.2201460119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Yan Zhu
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080 Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, D-97080 Germany
| |
Collapse
|
10
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
11
|
Brunet YR, Habib C, Brogan AP, Artzi L, Rudner DZ. Intrinsically disordered protein regions are required for cell wall homeostasis in Bacillus subtilis. Genes Dev 2022; 36:970-984. [PMID: 36265902 PMCID: PMC9732909 DOI: 10.1101/gad.349895.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) have been implicated in diverse nuclear and cytoplasmic functions in eukaryotes, but their roles in bacteria are less clear. Here, we report that extracytoplasmic IDRs in Bacillus subtilis are required for cell wall homeostasis. The B. subtilis σI transcription factor is activated in response to envelope stress through regulated intramembrane proteolysis (RIP) of its membrane-anchored anti-σ factor, RsgI. Unlike canonical RIP pathways, we show that ectodomain (site-1) cleavage of RsgI is constitutive, but the two cleavage products remain stably associated, preventing intramembrane (site-2) proteolysis. The regulated step in this pathway is their dissociation, which is triggered by impaired cell wall synthesis and requires RsgI's extracytoplasmic IDR. Intriguingly, the major peptidoglycan polymerase PBP1 also contains an extracytoplasmic IDR, and we show that this region is important for its function. Disparate IDRs can replace the native IDRs on both RsgI and PBP1, arguing that these unstructured regions function similarly. Our data support a model in which the RsgI-σI signaling system and PBP1 represent complementary pathways to repair gaps in the PG meshwork. The IDR on RsgI senses these gaps and activates σI, while the IDR on PBP1 directs the synthase to these sites to fortify them.
Collapse
Affiliation(s)
- Yannick R. Brunet
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lior Artzi
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Manoil D, Parga A, Hellesen C, Khawaji A, Brundin M, Durual S, Özenci V, Fang H, Belibasakis GN. Photo-oxidative stress response and virulence traits are co-regulated in E. faecalis after antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112547. [PMID: 36030693 DOI: 10.1016/j.jphotobiol.2022.112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of photo-oxidative stress responses in bacteria that survive antimicrobial photodynamic therapy (aPDT) is scarce. Whereas aPDT is attracting growing clinical interest, subsequent stress responses are crucial to evaluate as they may lead to the up-regulation of pathogenic traits. Here, we aimed to assess transcriptional responses to sublethal aPDT-stress and identify potential connections with virulence-related genes. Six Enterococcus faecalis strains were investigated; ATCC 29212, three dental root-canal isolates labelled UmID1, UmID2 and UmID3 and two vancomycin-resistant isolates labelled A1 and A2. TMPyP was employed as a photosensitiser. A viability dose-response curve to increasing concentrations of TMPyP was determined by culture plating. Differential expression of genes involved in oxidative stress responses (dps and hypR), general stress responses (dnaK, sigma-factorV and relA), virulence-related genes (ace, fsrC and gelE) and vancomycin-resistance (vanA) was assessed by reverse-transcription qPCR. TMPyP-mediated aPDT inactivated all strains with comparable efficiencies. TMPyP at 0.015 μM was selected to induce sublethal photo-oxidative stress. Despite heterogeneities in gene expression between strains, transcriptional profiles revealed up-regulations of transcripts dps, hypR as well as dnaK and sigma factorV after exposure to TMPyP alone and to light-irradiated TMPyP. Specifically, the alternative sigma factorV reached up to 39 ± 113-fold (median ± IQR) (p = 0.0369) in strain A2. Up-regulation of the quorum sensing operon, fsr, and its downstream virulence-related gelatinase gelE were also observed in strains ATCC-29212, A1, A2 and UmID3. Finally, photo-oxidative stress induced vanA-type vancomycin-resistance gene in both carrier isolates, reaching up to 3.3 ± 17-fold in strain A2 (p = 0.015). These findings indicate that, while aPDT successfully inactivates vancomycin-resistant and naïve strains of E. faecalis, subpopulations of surviving cells respond by co-ordinately up-regulating a network of genes involved in stress survival and virulence. This includes the induction of vancomycin-resistance genes in carrier isolates. These data may provide the mechanistic basis to circumvent bacterial responses and improve future clinical protocols.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Ana Parga
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cecilia Hellesen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Arwa Khawaji
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, Umeå, Sweden
| | - Stéphane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Volkan Özenci
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Hong Fang
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
13
|
Shen A, Tamayo R. Editorial overview: Gene regulation mechanisms governing Clostridioides difficile physiology and virulence. Curr Opin Microbiol 2022; 67:102139. [PMID: 35231749 DOI: 10.1016/j.mib.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, Livesey T, Saez T, Locke JCW. Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit. Mol Syst Biol 2021; 17:e9832. [PMID: 34286912 PMCID: PMC8287880 DOI: 10.15252/msb.20209832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Collapse
Affiliation(s)
| | | | - Bruno M C Martins
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Toby Livesey
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Teresa Saez
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
15
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
Signal Peptidase-Mediated Cleavage of the Anti-σ Factor RsiP at Site 1 Controls σ P Activation and β-Lactam Resistance in Bacillus thuringiensis. mBio 2021; 13:e0370721. [PMID: 35164554 PMCID: PMC8844934 DOI: 10.1128/mbio.03707-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In Bacillus thuringiensis, β-lactam antibiotic resistance is controlled by the extracytoplasmic function (ECF) σ factor σP. σP activity is inhibited by the anti-σ factor RsiP. In the presence of β-lactam antibiotics, RsiP is degraded and σP is activated. Previous work found that RsiP degradation requires cleavage of RsiP at site 1 by an unknown protease, followed by cleavage at site 2 by the site 2 protease RasP. The penicillin-binding protein PbpP acts as a sensor for β-lactams. PbpP initiates σP activation and is required for site 1 cleavage of RsiP but is not the site 1 protease. Here, we describe the identification of a signal peptidase, SipP, which cleaves RsiP at a site 1 signal peptidase cleavage site and is required for σP activation. Finally, many B. anthracis strains are sensitive to β-lactams yet encode the σP-RsiP signal transduction system. We identified a naturally occurring mutation in the signal peptidase cleavage site of B. anthracis RsiP that renders it resistant to SipP cleavage. We find that B. anthracis RsiP is not degraded in the presence of β-lactams. Altering the B. anthracis RsiP site 1 cleavage site by a single residue to resemble B. thuringiensis RsiP results in β-lactam-dependent degradation of RsiP. We show that mutation of the B. thuringiensis RsiP cleavage site to resemble the sequence of B. anthracis RsiP blocks degradation by SipP. The change in the cleavage site likely explains many reasons why B. anthracis strains are sensitive to β-lactams. IMPORTANCE β-Lactam antibiotics are important for the treatment of many bacterial infections. However, resistance mechanisms have become increasingly more prevalent. Understanding how β-lactam resistance is conferred and how bacteria control expression of β-lactam resistance is important for informing the future treatment of bacterial infections. σP is an alternative σ factor that controls the transcription of genes that confer β-lactam resistance in Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis. Here, we identify a signal peptidase as the protease required for initiating activation of σP by the degradation of the anti-σ factor RsiP. The discovery that the signal peptidase SipP is required for σP activation highlights an increasing role for signal peptidases in signal transduction, as well as in antibiotic resistance.
Collapse
|
17
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
18
|
Wettstadt S, Llamas MA. Role of Regulated Proteolysis in the Communication of Bacteria With the Environment. Front Mol Biosci 2020; 7:586497. [PMID: 33195433 PMCID: PMC7593790 DOI: 10.3389/fmolb.2020.586497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this process allows for an immediate response to a given signal, which facilitates adaptation to the surrounding environment and bacterial survival. Moreover, regulated proteolysis is a fundamental process for the transmission of extracellular signals to the cytosol through the bacterial membranes. By a proteolytic mechanism known as regulated intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of the membrane to liberate a cytosolic domain or protein able to modify gene transcription. This allows the transmission of a signal present on one side of a membrane to the other side where the response is elicited. In this work, we review the role of regulated proteolysis in the bacterial communication with the environment through the modulation of the main bacterial signal transduction systems, namely one- and two-component systems, and alternative σ factors.
Collapse
Affiliation(s)
- Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
19
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Otero-Asman JR, Quesada JM, Jim KK, Ocampo-Sosa A, Civantos C, Bitter W, Llamas MA. The extracytoplasmic function sigma factor σ VreI is active during infection and contributes to phosphate starvation-induced virulence of Pseudomonas aeruginosa. Sci Rep 2020; 10:3139. [PMID: 32081993 PMCID: PMC7035377 DOI: 10.1038/s41598-020-60197-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
The extracytoplasmic function sigma factor σVreI of the human pathogen Pseudomonas aeruginosa promotes transcription of potential virulence determinants, including secretion systems and secreted proteins. Its activity is modulated by the VreR anti-σ factor that inhibits the binding of σVreI to the RNA polymerase in the absence of a (still unknown) inducing signal. The vreI-vreR genes are expressed under inorganic phosphate (Pi) starvation, a physiological condition often encountered in the host that increases P. aeruginosa pathogenicity. However, whether or not σVreI is active in vivo during infection and contributes to the Pi starvation-induced virulence of this pathogen has not been analyzed yet. Using zebrafish embryos and a human alveolar basal epithelial cell line as P. aeruginosa hosts, we demonstrate in this work that σVreI is active during infection and that lack of σVreI considerably reduces the Pi starvation-induced virulence of this pathogen. Surprisingly, lack of the σVreI inhibitor, the VreR anti-σ factor, also diminishes the virulence of P. aeruginosa. By transcriptomic analyses we show that VreR modulates gene expression not only in a σVreI-dependent but also in a σVreI-independent manner. This includes potential virulence determinants and transcriptional regulators that could be responsible for the reduced virulence of the ΔvreR mutant.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Kin K Jim
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - Alain Ocampo-Sosa
- Service of Microbiology, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University medical centers, location VU University, Amsterdam, The Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
21
|
Activation of the Extracytoplasmic Function σ Factor σ P by β-Lactams in Bacillus thuringiensis Requires the Site-2 Protease RasP. mSphere 2019; 4:4/4/e00511-19. [PMID: 31391284 PMCID: PMC6686233 DOI: 10.1128/msphere.00511-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of antibiotics to treat bacterial infections has had a dramatic and positive impact on human health. However, shortly after the introduction of a new antibiotic, bacteria often develop resistance. The bacterial cell envelope is essential for cell viability and is the target of many of the most commonly used antibiotics, including β-lactam antibiotics. Resistance to β-lactams is often dependent upon β-lactamases. In B. cereus, B. thuringiensis, and some B. anthracis strains, the expression of some β-lactamases is inducible. This inducible β-lactamase expression is controlled by activation of an alternative σ factor called σP. Here, we show that β-lactam antibiotics induce σP activation by degradation of the anti-σ factor RsiP. Bacteria can utilize alternative σ factors to regulate sets of genes in response to changes in the environment. The largest and most diverse group of alternative σ factors are the extracytoplasmic function (ECF) σ factors. σP is an ECF σ factor found in Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Previous work showed that σP is induced by ampicillin, a β-lactam antibiotic, and required for resistance to ampicillin. However, it was not known how activation of σP is controlled or what other antibiotics may activate σP. Here, we report that activation of σP is specific to a subset of β-lactams and that σP is required for resistance to these β-lactams. We demonstrate that activation of σP is controlled by the proteolytic destruction of the anti-σ factor RsiP and that degradation of RsiP requires multiple proteases. Upon exposure to β-lactams, the extracellular domain of RsiP is cleaved by an unknown protease, which we predict cleaves at site-1. Following cleavage by the unknown protease, the N terminus of RsiP is further degraded by the site-2 intramembrane protease RasP. Our data indicate that RasP cleavage of RsiP is not the rate-limiting step in σP activation. This proteolytic cascade leads to activation of σP, which induces resistance to β-lactams likely via increased expression of β-lactamases. IMPORTANCE The discovery of antibiotics to treat bacterial infections has had a dramatic and positive impact on human health. However, shortly after the introduction of a new antibiotic, bacteria often develop resistance. The bacterial cell envelope is essential for cell viability and is the target of many of the most commonly used antibiotics, including β-lactam antibiotics. Resistance to β-lactams is often dependent upon β-lactamases. In B. cereus, B. thuringiensis, and some B. anthracis strains, the expression of some β-lactamases is inducible. This inducible β-lactamase expression is controlled by activation of an alternative σ factor called σP. Here, we show that β-lactam antibiotics induce σP activation by degradation of the anti-σ factor RsiP.
Collapse
|
22
|
Pinto D, Liu Q, Mascher T. ECF σ factors with regulatory extensions: the one-component systems of the σ universe. Mol Microbiol 2019; 112:399-409. [PMID: 31175685 DOI: 10.1111/mmi.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
The σ subunit of the bacterial RNA polymerase determines promoter specificity. The extracytoplasmic function σ factors (ECFs) represent the most abundant and diverse group of alternative σ factors and are present in the vast majority of bacterial genomes. Typically, ECFs are regulated by anti-σ factors that sequester their cognate ECFs, thereby preventing their interaction with the RNA polymerase. Beyond these ECF paradigms, a number of distinct modes of regulation have been proposed and experimentally investigated. Regulatory extensions represent one such alternative mechanism of ECF regulation that can be found in 18 phylogenetically distinct ECF groups. Here, the σ factors contain additional domains that are fused to the ECF core domains and are involved in stimulus perception and modulation of σ factor activity. We will summarize the current state of knowledge on regulating ECF activity by C-terminal extensions. We will also discuss newly identified ECF groups containing either N- or C-terminal extensions and propose possible mechanisms by which these extensions have been generated and affect ECF σ factor activity. Based on their modular architecture and the resulting physical connection between stimulus perception and transcriptional output, these ECFs are analogous to one-component systems, the primary mechanism of bacterial signal transduction.
Collapse
Affiliation(s)
- Daniela Pinto
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Qiang Liu
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| |
Collapse
|