1
|
Tajeri S, Langsley G. Virulence attenuation of Theileria annulata-transformed macrophages. Trends Parasitol 2025; 41:301-316. [PMID: 40057452 DOI: 10.1016/j.pt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/05/2025]
Abstract
Tropical theileriosis is a significant tick-borne disease affecting cattle. For decades an empirical live attenuated vaccine has been the primary method of controlling disease. The vaccine is produced through prolonged culture of Theileria annulata schizont-transformed macrophages, but how loss of virulence occurs remains unclear. Notably attenuated (vaccine) macrophages display dampened dissemination potential compared with their original, virulent counterparts. In addition, parasite schizonts in attenuated macrophages have significantly lost their ability to differentiate into merozoites. This review discusses the changes that occur during long-term passage of T. annulata-transformed bovine macrophages and how they contribute to loss of virulence, defined as heightened dissemination. Finally, we also suggest that a common parasite-dependent pathway is potentially involved in both macrophage dissemination and parasite merogony.
Collapse
Affiliation(s)
- Shahin Tajeri
- Laboratoire de Biologie des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France; Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| | - Gordon Langsley
- Laboratoire de Biologie des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France; INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France.
| |
Collapse
|
2
|
Aziz KJ, Hamadamin BQ. Epidemiological and molecular study of Theileria spp. in sheep and goats in Erbil, Iraq. Trop Anim Health Prod 2025; 57:80. [PMID: 40009303 DOI: 10.1007/s11250-025-04330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Theileria spp. are a group of hemoprotozoal parasites pose a significant threat to small ruminants in tropical and subtropical regions of the world. Because of that and due to the limited data on the genetic diversity of Theileria species in Erbil Governorate, northern Iraq, this study was conducted to assess the prevalence of Theileria spp. in sheep and goats using both Giemsa-stained blood smears and PCR methods as a diagnostic criterion. The overall infection rate detected by blood smears was 26.2% in sheep and 18.3% in goats, while PCR showed higher infection rates, 47.7% in sheep and 38.3% in goats. PCR analysis identified various Theileria species, including T. ovis, T. lestoquardi, T. uilenbergi, and T. annulata, each displaying different prevalence rates. Significantly, T. lestoquardi had the highest rate of single infections, especially in goats, with an infection rate of 34.8%. Mixed infections were prevalent, occurring in 22.6% of sheep and 26.1% of goats, primarily involving T. ovis and T. lestoquardi. An assessment of factors influencing infection rates revealed that tick infestation and irregular use of acaricides were significant risk factors. Sheep with tick infestations exhibited a 59% infection rate, while goats had an infection rate of 44.25%. Regular use of acaricides was associated with a reduction in prevalence in both species. Additionally, animals with a history of tick infestations and those in communal grazing systems demonstrated higher infection rates. The sequence analysis of isolates from sheep and goats, based on the 18S rRNA gene, identified several species. The identified species have been deposited in the NCBI with the following accession numbers: T. ovis (PQ325696, PQ325698), T. lestoquardi (PQ325701, PQ325702), T. uilenbergi (PQ325706, PQ325707), and T. annulata (PQ325699, PQ325700). The findings from this investigation offer valuable insights into the genetic diversity and epidemiology of Theileria species in sheep and goats. It can be concluded that periodically controlling vector ticks and arthropods is an important factor in controlling and reducing the spread of theileriosis in targeted domestic animals.
Collapse
Affiliation(s)
- Khalid Jabar Aziz
- Department of Basic Sciences, College of Veterinary Medicine, Salahaddin University-Erbil, Erbil, Iraq.
| | - Bafrin Qader Hamadamin
- Veterinary Department, Shaqlawa Technical College, Erbil Polytechnic University, Erbil, Iraq
| |
Collapse
|
3
|
Tajeri S, Shiels B, Langsley G, Nijhof AM. Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes. Microb Pathog 2025; 199:107252. [PMID: 39730099 DOI: 10.1016/j.micpath.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood. We previously showed that the Ta9 protein from T. annulata (TA15705) is secreted into the host cell cytoplasm and contributes to infection-induced AP-1 transcriptional activity. The current study employed RNA-seq to investigate the ability of ectopically expressed Ta9 to modulate the gene transcription profile of a bovine macrophage cell line, BoMac. RNA-seq identified 560 (400 upregulated and 160 downregulated) differentially expressed genes. KEGG analysis predicted a high number of upregulated genes associated with carcinogenesis such as CCND1, CDKN1A, ETV4, ETV5, FLI1, FRA1, GLI2, GRO1, HCK, IL7R, MYBL1, MYCN, PIM1 and TAL1. Ta9 introduction also affected genes associated with proinflammatory processes such as cytokines, chemokines, growth factors and metalloproteinases. Enrichment analysis of differentially expressed genes revealed that Ta9 is potentially involved in activating other host cell signaling pathways in addition to those that lead to induction of AP-1. Comparing our data with data on differentially expressed BoMac genes modulated by the secreted TashAT2 factor of T. annulata identified the gene encoding the tyrosine protein kinase hematopoietic cell kinase (HCK) as common to both data sets. HCK is essential for the proliferation of T. parva-transformed B cells and herein, we demonstrate that enzymatic activity of HCK is also essential for T. annulata- and T. lestoquardi-transformed macrophage proliferation.
Collapse
Affiliation(s)
- Shahin Tajeri
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France; Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Ard Menzo Nijhof
- Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany.
| |
Collapse
|
4
|
Gakuya F, Kock R, Lekolool I, Mihok S. Trypanosomiasis in Introduced Southern White Rhinoceros (Ceratotherium simum simum) Gifts to Ex Situ Habitat in Aitong, Kenya. J Wildl Dis 2024; 60:886-902. [PMID: 39166333 DOI: 10.7589/jwd-d-24-00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
During the opening of diplomatic relations in the 1990s, South Africa gifted 20 southern white rhinoceros (Ceratotherium simum simum) to Kenya. The species is not indigenous to Kenya, and management of the introduction was not clearly addressed in the legislation. Responsibility was left to the private sector and local authorities. Ten of the animals were introduced to land contiguous with the Maasai Mara National Reserve, an area with tsetse-trypanosomiasis challenges, and with rare cases of human sleeping sickness. Mortalities had been previously documented when indigenous naïve black rhinoceros were introduced to areas with tsetse; hence there was no consensus on the management of this introduction. Feasibility was only explored once before with the introduction of two animals in a monitored and managed translocation from Lewa Downs, Laikipia in 1992-1994. Ultimately, Kenyan experts were co-opted to address risk after trypanosomiasis occurred in many animals. Unfortunately, this finding was followed by gradual mortalities of most rhinoceros with only a few being saved by removal to highland private sanctuaries. This event was complicated by many factors. Samples were only sporadically collected, and mainly from sick animals. With no clear responsibility by government agencies, a collaboration between veterinarians and researchers resulted in characterization of the disease challenge, and when invited, assessment of health status. Laboratory diagnostics revealed common and sometimes severe infections with Trypanosoma brucei, a normally infrequent trypanosome. Infection was associated with disturbances in erythropoiesis, especially anemia. Symptoms varied from sudden death associated with intestinal atony, to a semiparalyzed animal that was partially responsive to treatment for trypanosomes. This event should be used as a caution to future movements of this species that are planned or ongoing in Africa, for conservation or other purposes.
Collapse
Affiliation(s)
- Francis Gakuya
- Wildlife Research and Training Institute, P.O. Box 842-20117, Naivasha, Kenya
- These authors contributed equally
| | - Richard Kock
- Providence House, Green Hill Lane, Harrietsham, Kent ME17 1NF, UK
- Formerly Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
- Formerly Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
- These authors contributed equally
| | - Isaac Lekolool
- Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Steve Mihok
- 388 Church Street, Russell, Ontario K4R 1A8, Canada
- Formerly International Centre of Insect Physiology, P.O. Box 30772-00100, Nairobi, Kenya
- These authors contributed equally
| |
Collapse
|
5
|
Sudan V, Paliwal S. The interplay of cytokines in bovine tropical theileriosis: a mini review. Trop Anim Health Prod 2024; 56:174. [PMID: 38787525 DOI: 10.1007/s11250-024-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Studying cytokine profiling in Theleria annulata infection enhances our understanding of how the immune response unfolds, the intricate interactions between the host and the parasite, the strategies employed by the parasite to evade the immune system, and potential avenues for developing treatments. The generation of pro-inflammatory cytokines plays a pivotal role in the immune response against T. annulata infection. Elevated concentrations of these cytokines potentially contribute to the manifestation of clinical symptoms associated with the disease, such as fever, anemia, exophthalmia, and weight loss. The production of anti-inflammatory cytokines potentially serves as a regulatory mechanism for the immune response, preventing the development of severe disease. Nevertheless, in animals afflicted by T. annulata infection, there is often a notable decrease in the levels of these cytokines, suggesting that they may not be as effective in mitigating the disease as they are in uninfected animals. This knowledge can be harnessed to develop improved diagnostic methods, treatments, and vaccines for tropical theileriosis. The objective of this current mini review is to achieve the same goal by consolidating the available knowledge of cytokine interactions in Bovine Tropical Theileriosis (BTT).
Collapse
Affiliation(s)
- Vikrant Sudan
- Department of Veterinary Parasitology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Punjab, 151103, India.
| | - Sanjhi Paliwal
- College of Biotechnology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
- Centre for Research Impact and Outcome (CRIO), Chitkara University, Punjab, 140401, India
| |
Collapse
|
6
|
Tajeri S, Chattopadhyay D, Langsley G, Nijhof AM. A Theileria annulata parasite with a single mutation, methionine 128 to isoleucine (M128I), in cytochrome B is resistant to buparvaquone. PLoS One 2024; 19:e0299002. [PMID: 38626086 PMCID: PMC11020719 DOI: 10.1371/journal.pone.0299002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/04/2024] [Indexed: 04/18/2024] Open
Abstract
Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.
Collapse
Affiliation(s)
- Shahin Tajeri
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Debasish Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gordon Langsley
- Inserm U1016-CNRS UMR8104, Institut Cochin, Paris, France
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes—Sorbonne Paris Cité, Paris, France
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Fonti N, Parisi F, Mancianti F, Freer G, Poli A. Cancerogenic parasites in veterinary medicine: a narrative literature review. Infect Agent Cancer 2023; 18:45. [PMID: 37496079 PMCID: PMC10373346 DOI: 10.1186/s13027-023-00522-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Parasite infection is one of the many environmental factors that can significantly contribute to carcinogenesis and is already known to be associated with a variety of malignancies in both human and veterinary medicine. However, the actual number of cancerogenic parasites and their relationship to tumor development is far from being fully understood, especially in veterinary medicine. Thus, the aim of this review is to investigate parasite-related cancers in domestic and wild animals and their burden in veterinary oncology. Spontaneous neoplasia with ascertained or putative parasite etiology in domestic and wild animals will be reviewed, and the multifarious mechanisms of protozoan and metazoan cancer induction will be discussed.
Collapse
Affiliation(s)
- Niccolò Fonti
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Francesca Parisi
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Mancianti
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
8
|
Barman M, Dandasena D, Suresh A, Bhandari V, Kamble S, Singh S, Subudhi M, Sharma P. Artemisinin derivatives induce oxidative stress leading to DNA damage and caspase-mediated apoptosis in Theileria annulata-transformed cells. Cell Commun Signal 2023; 21:78. [PMID: 37069625 PMCID: PMC10111749 DOI: 10.1186/s12964-023-01067-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites. METHODS Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action. RESULTS ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells. CONCLUSIONS Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.
Collapse
Affiliation(s)
| | - Debabrata Dandasena
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Akash Suresh
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Vasundhra Bhandari
- National Institute of Animal Biotechnology, Hyderabad, India
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sonam Kamble
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Sakshi Singh
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
9
|
Comparative Degradome Analysis of the Bovine Piroplasmid Pathogens Babesia bovis and Theileria annulata. Pathogens 2023; 12:pathogens12020237. [PMID: 36839509 PMCID: PMC9965338 DOI: 10.3390/pathogens12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Babesia bovis and Theileria annulata are tick-borne hemoprotozoans that impact bovine health and are responsible for considerable fatalities in tropical and subtropical regions around the world. Both pathogens infect the same vertebrate host, are closely related, and contain similar-sized genomes; however, they differ in invertebrate host specificity, absence vs. presence of a schizont stage, erythrocyte invasion mechanism, and transovarial vs. transstadial transmission. Phylogenetic analysis and bidirectional best hit (BBH) identified a similar number of aspartic, metallo, and threonine proteinases and nonproteinase homologs. In contrast, a considerably increased number of S54 serine rhomboid proteinases and S9 nonproteinase homologs were identified in B. bovis, whereas C1A cysteine proteinases and A1 aspartic nonproteinase homologs were found to be expanded in T. annulata. Furthermore, a single proteinase of families S8 (subtilisin-like protein) and C12 (ubiquitin carboxyl-terminal hydrolase), as well as four nonproteinase homologs, one with dual domains M23-M23 and three with S9-S9, were exclusively present in B. bovis. Finally, a pronounced difference in species-specific ancillary domains was observed between both species. We hypothesize that the observed degradome differences represent functional correlates of the dissimilar life history features of B. bovis and T. annulata. The presented improved classification of piroplasmid proteinases will facilitate an informed choice for future in-depth functional studies.
Collapse
|
10
|
Theileria annulata histone deacetylase 1 (TaHDAC1) initiates schizont to merozoite stage conversion. Sci Rep 2022; 12:12710. [PMID: 35882887 PMCID: PMC9325746 DOI: 10.1038/s41598-022-15518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
A fungal metabolite, FR235222, specifically inhibits a histone deacetylase of the apicomplexan parasite Toxoplasma gondii and TgHDAC3 has emerged as a key factor regulating developmental stage transition in this species. Here, we exploited FR235222 to ask if changes in histone acetylation regulate developmental stage transition of Theileria annulata, another apicomplexan species. We found that FR235222 treatment of T. annulata-infected transformed leukocytes induced a proliferation arrest. The blockade in proliferation was due to drug-induced conversion of intracellular schizonts to merozoites that lack the ability to maintain host leukocyte cell division. Induction of merogony by FR235222 leads to an increase in expression of merozoite-marker (rhoptry) proteins. RNA-seq of FR235222-treated T. annulata-infected B cells identified deregulated expression of 468 parasite genes including a number encoding parasite ApiAP2 transcription factors. Thus, similar to T. gondii, FR235222 inhibits T. annulata HDAC (TaHDAC1) activity and places parasite histone acetylation as a major regulatory event of the transition from schizonts to merozoites.
Collapse
|
11
|
The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 2022; 121:1207-1245. [DOI: 10.1007/s00436-022-07424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
|