1
|
Li H, Li R, Yu H, Zhang Y, Feng H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution. PLoS One 2025; 20:e0322880. [PMID: 40388423 DOI: 10.1371/journal.pone.0322880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) are widely present across various organisms and play crucial roles in regulating cellular processes such as growth, proliferation, signal transduction, and other physiological functions. Recent research has increasingly focused on the regulation of STKs and STPs in bacteria. STKs have been well studied, identified and characterized in a variety of bacterial species. However, the role of STPs in bacteria remains less understood, and the number of proteins characterized is limited. It has been found that most of the STPs characterized in bacteria were Mg2+/Mn2+ dependent 2C protein phosphatases (PP2Cs), but the evolutionary relationship and taxonomic distribution of bacterial PP2C phosphatases were still not fully elucidated. In this study, we utilized bacterial PP2C phosphatase sequences from the InterPro database to perform a phylogenetic analysis, categorizing the family into five groups. Based on this classification, we examined the evolutionary relationships, species distribution, sequence and structural variations, and domain distribution characteristics of bacterial PP2C phosphatases. Our analysis uncovered evidence of a common evolutionary origin for bacterial PP2C phosphatases. These findings advance the understanding of PP2C phosphatases, offering valuable insights for future functional studies of bacterial serine/threonine phosphatases and aiding in the design of targeted therapeutics for pathogenic bacteria.
Collapse
Affiliation(s)
- Hang Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyue Yu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Youhuan Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mejia-Santana A, Collins R, Doud EH, Landeta C. Disulfide bonds are required for cell division, cell envelope biogenesis and antibiotic resistance proteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635063. [PMID: 39975046 PMCID: PMC11838256 DOI: 10.1101/2025.01.27.635063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacteria, including Mycobacterium tuberculosis-the etiological agent of tuberculosis-have a unique cell envelope critical for their survival and resistance. The cell envelope's assembly and maintenance influence permeability, making it a key target against multidrug-resistant strains. Disulfide bond (DSB) formation is crucial for the folding of cell envelope proteins. The DSB pathway in mycobacteria includes two enzymes, DsbA and VKOR, required for survival. Using bioinformatics and cysteine profiling proteomics, we identified cell envelope proteins dependent on DSBs. We validated via in vivo alkylation that key proteins like LamA (MmpS3), PstP, LpqW, and EmbB rely on DSBs for stability. Furthermore, chemical inhibition of VKOR results in phenotypes similar to those of Δvkor. Thus, targeting DsbA-VKOR systems could compromise both cell division and mycomembrane integrity. These findings emphasize the potential of DSB inhibition as a novel strategy to combat mycobacterial infections.
Collapse
Affiliation(s)
| | - Rebecca Collins
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| | - Emma H. Doud
- Biochemistry and Molecular Biology. Indiana University School of Medicine. Indianapolis, IN. U.S.A
- Center for Proteome Analysis; Indiana University School of Medicine. Indianapolis, IN. U.S.A
| | - Cristina Landeta
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| |
Collapse
|
3
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Block AM, Wiegert PC, Namugenyi SB, Tischler AD. Transposon sequencing reveals metabolic pathways essential for Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011663. [PMID: 38498580 PMCID: PMC10977890 DOI: 10.1371/journal.ppat.1011663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/28/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
New drugs are needed to shorten and simplify treatment of tuberculosis caused by Mycobacterium tuberculosis. Metabolic pathways that M. tuberculosis requires for growth or survival during infection represent potential targets for anti-tubercular drug development. Genes and metabolic pathways essential for M. tuberculosis growth in standard laboratory culture conditions have been defined by genome-wide genetic screens. However, whether M. tuberculosis requires these essential genes during infection has not been comprehensively explored because mutant strains cannot be generated using standard methods. Here we show that M. tuberculosis requires the phenylalanine (Phe) and de novo purine and thiamine biosynthetic pathways for mammalian infection. We used a defined collection of M. tuberculosis transposon (Tn) mutants in essential genes, which we generated using a custom nutrient-rich medium, and transposon sequencing (Tn-seq) to identify multiple central metabolic pathways required for fitness in a mouse infection model. We confirmed by individual retesting and complementation that mutations in pheA (Phe biosynthesis) or purF (purine and thiamine biosynthesis) cause death of M. tuberculosis in the absence of nutrient supplementation in vitro and strong attenuation in infected mice. Our findings show that Tn-seq with defined Tn mutant pools can be used to identify M. tuberculosis genes required during mouse lung infection. Our results also demonstrate that M. tuberculosis requires Phe and purine/thiamine biosynthesis for survival in the host, implicating these metabolic pathways as prime targets for the development of new antibiotics to combat tuberculosis.
Collapse
Affiliation(s)
- Alisha M. Block
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Parker C. Wiegert
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Sarah B. Namugenyi
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| | - Anna D. Tischler
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities Campus, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569614. [PMID: 38076906 PMCID: PMC10705497 DOI: 10.1101/2023.12.01.569614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.
Collapse
Affiliation(s)
- Celena M. Gwin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Kuldeepkumar R. Gupta
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
6
|
Habibi Arejan N, Ensinck D, Diacovich L, Patel PB, Quintanilla SY, Emami Saleh A, Gramajo H, Boutte CC. Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum. Front Microbiol 2023; 13:1085918. [PMID: 36713172 PMCID: PMC9878328 DOI: 10.3389/fmicb.2022.1085918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Mycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis. Our data show that Wag31 helps to control proper septation as well as new and old pole elongation. We have identified key amino acid residues involved in these essential functions. Enzyme assays revealed that Wag31 interacts with lipid metabolism by modulating acyl-CoA carboxylase (ACCase) activity. We show that Wag31 does not control polar growth by regulating the localization of cell wall precursor enzymes to the Intracellular Membrane Domain, and we also demonstrate that phosphorylation of Wag31 does not substantively regulate peptidoglycan metabolism. This work establishes new regulatory functions of Wag31 in the mycobacterial cell cycle and clarifies the need for new molecular models of Wag31 function.
Collapse
Affiliation(s)
- Neda Habibi Arejan
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Delfina Ensinck
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | - Arash Emami Saleh
- Department of Civil Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cara C. Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States,*Correspondence: Cara C. Boutte,
| |
Collapse
|
7
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|