1
|
Gliwa K, Hull J, Kansol A, Zembruski V, Lakshmanan R, Mietzsch M, Chipman P, Bennett A, McKenna R. Biophysical and structural insights into AAV genome ejection. J Virol 2025; 99:e0089924. [PMID: 39907279 PMCID: PMC11915859 DOI: 10.1128/jvi.00899-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/09/2024] [Indexed: 02/06/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) is comprised of non-enveloped capsids that can package a therapeutic transgene and are currently being developed and utilized as gene therapy vectors. The therapeutic efficiency of rAAV is dependent on successful cytoplasmic trafficking and transgene delivery to the nucleus. It is hypothesized that an increased understanding of the effects of the cellular environment and biophysical properties of the capsid as it traffics to the nucleus could provide insight to improve vector efficiency. The AAV capsid is exposed to increasing [H+] during endo-lysosomal trafficking. Exposure to low pH facilitates the externalization of the viral protein 1 unique region (VP1u). This VP1u contains a phospholipase A2 domain required for endosomal escape and nuclear localization signals that facilitate nuclear targeting and entry. The viral genome is released either after total capsid disassembly or via a concerted DNA ejection mechanism in the nucleus. This study presents the characterization of genome ejection (GE) for two diverse serotypes, AAV2 and AAV5, using temperature. The temperature required to disassemble the virus capsid (TM) is significantly higher than the temperature required to expose the transgene (TE) for both serotypes. This was verified by quantitative PCR (qPCR) and transmission electron microscopy. Additionally, the absence of VP1/VP2 in the capsids and a decrease in pH increase the temperature of GE. Furthermore, cryo-electron microscopy structures of the AAV5 capsid pre- and post-GE reveal dynamics at the twofold, threefold, and fivefold regions of the capsid interior consistent with a concerted egress of the viral genome.IMPORTANCEThe development of recombinant adeno-associated virus (rAAV) capsids has grown rapidly in recent years, with five of the eight established therapeutics gaining approval in the past 2 years alone. Clinical progression with AAV2 and AAV5 represents a growing need to further characterize the molecular biology of these viruses. The goal of AAV-based gene therapy is to treat monogenic disorders with a vector-delivered transgene to provide wild-type protein function. A better understanding of the dynamics and conditions enabling transgene release may improve therapeutic efficiency. In addition to their clinical importance, AAV2 and 5 were chosen in this study for their diverse antigenic and biophysical properties compared to more closely related serotypes. Characterization of a shared genome ejection process may imply a conserved mechanism for all rAAV therapies.
Collapse
Affiliation(s)
- Keely Gliwa
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Joshua Hull
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Victoria Zembruski
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Renuk Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- ICBR Electron Microscopy Core Facility, University of Florida, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Tang J, Chen S, Deng Y, Liu J, Huang D, Fu M, Xue B, Liu C, Wu C, Wang F, Zhou Y, Yang Q, Chen X. MA104 cell line is permissive for human bocavirus 1 infection. J Virol 2025; 99:e0153924. [PMID: 39846742 PMCID: PMC11852709 DOI: 10.1128/jvi.01539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Human bocavirus 1 (HBoV1) has appeared as an emerging pathogen, causing mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children and immunocompromised individuals. The lack of cell lines suitable for culturing replicative viruses hinders research on HBoV1. Here, we characterized the susceptibility to HBoV1 of 29 human and 7 animal cell lines, and identified a permissive cell line, MA104. The complete HBoV1 life cycle was achieved in MA104 cells, including viral entry, complete replication, and infectious progeny virion production. Additionally, the suppression of the interferon pathway facilitated the viral genome replication in MA104 cells. RNA-sequencing showed that innate immunity, inflammation, the PI3K-Akt and MAPK signaling pathways, and the cellular membrane system were mobilized in response to HBoV1 infection. Overall, our study is the first to identify a cell line, MA104, that supports the complete HBoV1 life cycle, which will promote research on HBoV1 virology and pathogenesis and benefit drug and vaccine development.IMPORTANCEHBoV1 is an emerging pathogen that mainly causes respiratory tract infections, while the lack of cell lines suitable for culture replicative viruses hindered research on HBoV1. Here, we identify a permissive cell line for HBoV1 infection, MA104, and reveal that the complete life cycle of HBoV1 was supported in MA104 cells. Our findings provide a suitable cell model for the study of HBoV1 and explore its application for antiviral drug evaluation, which is vital for research on HBoV1 virology and pathogenesis, as well as for drug and vaccine development.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Dan Huang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Diya DVD, Muneer A, Linu E, Sajeevan TP, Jayesh P, Joseph V, Philip R, Singh ISB. Replication kinetics, morphogenesis and interaction of shrimp parvovirus Penaeus stylirostris penstyldensovirus (PstDV1) in PmLyO-Sf9 cells. Microb Pathog 2025; 199:107179. [PMID: 39615708 DOI: 10.1016/j.micpath.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Penaeus stylirostris penstyldensovirus (PstDV1) is one of the significant shrimp parvovirus which causes runt deformity syndrome in shrimps. In the current study, we attempted to elucidate the replication cycle of the virus in PmLyO-Sf9 cells. PstDV1 needs 4-5 h to complete replication in the cell line and release. Viral capsid gene expression leads to three peaks during the time course of the study at 4hpi, 12hpi and 72hpi. Immediate release of virus from the cell and reinfection in the cells observed. Calveloe mediated entry of virus to cells was noted through endosomal inhibition assay. Electron micrographs supported the findings which also depicted the receptor mediated entry, endosomal transport, viroplasm showing active virus replication and assembly of virus inside the nucleus to be released through cell lysis and occlusion bodies. Also, changes in cell cycle to make the cells to enter S phase was observed in cell cycle related genes and flow cytometric analysis. This reveal the potency of the cell line to study host-pathogen interaction, viral morphogenesis which could promotes successful development of antiviral formulations against the virus while preserving the environment for future generations.
Collapse
Affiliation(s)
- D V Dominic Diya
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - A Muneer
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - Eldho Linu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - T P Sajeevan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - Puthumana Jayesh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, India.
| |
Collapse
|
4
|
Ebberink EH, Ruisinger A, Nuebel M, Meyer-Berg H, Ferreira IR, Thomann M, Heck AJ. Probing recombinant AAV capsid integrity and genome release after thermal stress by mass photometry. Mol Ther Methods Clin Dev 2024; 32:101293. [PMID: 39100914 PMCID: PMC11295964 DOI: 10.1016/j.omtm.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024]
Abstract
Adeno-associated viruses (AAVs) are gaining traction as delivery vehicles for gene therapy although the molecular understanding of AAV-transgene release is still limited. Typically, the process of viral uncoating is investigated (in vitro) through thermal stress, revealing capsid disintegration at elevated temperatures. To assess the (in)stability of different empty and filled AAV preparations, we used the light-scattering-based interferometric microscopy technique of mass photometry that, on a single-particle basis, determines the molecular weight of AAVs. By introducing a heat-stable DNA plasmid as an internal standard, we quantitatively probed the impact of heat on AAVs. Generally, empty AAVs exhibited greater heat resistance than genome-filled particles. Our data also indicate that upon DNA release, the capsids do not transform into empty AAVs, but seem to aggregate or disintegrate. Strikingly, some AAVs exhibited an intermediate state with disrupted capsids but preserved bound genome, a feature that experimentally only emerged following incubation with a nuclease. Our data demonstrate that the thermal uncoating process is highly AAV specific (i.e., can be influenced by serotype, genome, host system). We argue that nuclease treatment in combination with MP can be used as an additional analytical tool for assessing structural integrity of recombinant and/or clinical AAV vectors.
Collapse
Affiliation(s)
- Eduard H.T.M. Ebberink
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Alisa Ruisinger
- Gene Therapy Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Nuebel
- Gene Therapy Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | - Marco Thomann
- Gene Therapy Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands
- Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands
| |
Collapse
|
5
|
Patra AT, Tan E, Kok YJ, Ng SK, Bi X. Temporal insights into molecular and cellular responses during rAAV production in HEK293T cells. Mol Ther Methods Clin Dev 2024; 32:101278. [PMID: 39022743 PMCID: PMC11253160 DOI: 10.1016/j.omtm.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
The gene therapy field seeks cost-effective, large-scale production of recombinant adeno-associated virus (rAAV) vectors for high-dosage therapeutic applications. Although strategies like suspension cell culture and transfection optimization have shown moderate success, challenges persist for large-scale applications. To unravel molecular and cellular mechanisms influencing rAAV production, we conducted an SWATH-MS proteomic analysis of HEK293T cells transfected using standard, sub-optimal, and optimal conditions. Gene Ontology and pathway analysis revealed significant protein expression variations, particularly in processes related to cellular homeostasis, metabolic regulation, vesicular transport, ribosomal biogenesis, and cellular proliferation under optimal transfection conditions. This resulted in a 50% increase in rAAV titer compared with the standard protocol. Additionally, we identified modifications in host cell proteins crucial for AAV mRNA stability and gene translation, particularly regarding AAV capsid transcripts under optimal transfection conditions. Our study identified 124 host proteins associated with AAV replication and assembly, each exhibiting distinct expression pattern throughout rAAV production stages in optimal transfection condition. This investigation sheds light on the cellular mechanisms involved in rAAV production in HEK293T cells and proposes promising avenues for further enhancing rAAV titer during production.
Collapse
Affiliation(s)
- Alok Tanala Patra
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Evan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A∗STAR), Singapore 138668, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
6
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Colazo Salbetti MB, Boggio GA, Moreno L, Adamo MP. Human bocavirus respiratory infection: Tracing the path from viral replication and virus-cell interactions to diagnostic methods. Rev Med Virol 2023; 33:e2482. [PMID: 37749807 DOI: 10.1002/rmv.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Human bocaviruses were first described between 2005 and 2010, identified in respiratory and enteric tract samples of children. Screening studies have shown worldwide distribution. Based on phylogenetic analysis, they were classified into four genotypes (HBoV1-4). From a clinical perspective, human bocavirus 1 (HBoV1) is considered the most relevant, since it can cause upper and lower acute respiratory tract infection, mainly in infants, including common cold, bronchiolitis, and pneumonia, as well as wheezing in susceptible patients. However, the specific processes leading to structural, biochemical, and functional changes resulting in the different clinical presentations have not been elucidated yet. This review surveys the interactions between the virus and target cells that can potentially explain disease-causing mechanisms. It also summarises the clinical phenotype of cases, stressing the role of HBoV1 as an aetiological agent of lower acute respiratory infection in infants, together with laboratory tests for detection and diagnosis. By exploring the current knowledge on the epidemiology of HBoV1, insights into the complex scenario of paediatric respiratory infections are presented, as well as the potential effects that changes in the circulation can have on the dynamics of respiratory agents, spotlighting the benefits of comprehensively increase insights into incidence, interrelationships with co-circulating agents and potential control of HBoV1.
Collapse
Affiliation(s)
- María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
8
|
Mohammadi M. HBoV-1: virus structure, genomic features, life cycle, pathogenesis, epidemiology, diagnosis and clinical manifestations. Front Cell Infect Microbiol 2023; 13:1198127. [PMID: 37265497 PMCID: PMC10229813 DOI: 10.3389/fcimb.2023.1198127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The single-stranded DNA virus known as human bocavirus 1 (HBoV-1) is an icosahedral, linear member of the Parvoviridae family. In 2005, it was discovered in nasopharyngeal samples taken from kids who had respiratory tract illnesses. The HBoV genome is 4.7-5.7 kb in total length. The HBoV genome comprises three open-reading frames (ORF1, ORF2, and ORF3) that express structural proteins (VP1, VP2, and VP3), viral non-coding RNA, and non-structural proteins (NS1, NS1-70, NS2, NS3, and NP1) (BocaSR). The NS1 and NP1 are crucial for viral DNA replication and are substantially conserved proteins. Replication of the HBoV-1 genome in non-dividing, polarized airway epithelial cells. In vitro, HBoV-1 infects human airway epithelial cells that are strongly differentiated or polarized. Young children who have HBoV-1 are at risk for developing a wide range of respiratory illnesses, such as the common cold, acute otitis media, pneumonia, and bronchiolitis. The most common clinical symptoms are wheezing, coughing, dyspnea, and rhinorrhea. After infection, HBoV-1 DNA can continue to be present in airway secretions for months. The prevalence of coinfections is considerable, and the clinical symptoms can be more severe than those linked to mono-infections. HBoV-1 is frequently detected in combination with other pathogens in various reports. The fecal-oral and respiratory pathways are more likely to be used for HBoV-1 transmission. HBoV-1 is endemic; it tends to peak in the winter and spring. This Review summarizes the knowledge on HBoV-1.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Social Security Organization, Isfahan, Iran
- Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Fuertes MA, López Mateos D, Valiente L, Rodríguez Huete A, Valbuena A, Mateu MG. Electrostatic Screening, Acidic pH and Macromolecular Crowding Increase the Self-Assembly Efficiency of the Minute Virus of Mice Capsid In Vitro. Viruses 2023; 15:v15051054. [PMID: 37243141 DOI: 10.3390/v15051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers. In this study we analyzed the effects of protein concentration, macromolecular crowding, temperature, pH, ionic strength, or a combination of some of those variables on the fidelity and efficiency of self-assembly of the MVM capsid in vitro. The results revealed that the in vitro reassembly of the MVM capsid is an efficient and faithful process. Under some conditions, up to ~40% of the starting virus capsids were reassembled in vitro as free, non aggregated, correctly assembled particles. These results open up the possibility of encapsidating different compounds in VP2-only capsids of MVM during its reassembly in vitro, and encourage the use of virus-like particles of MVM as nanocontainers.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diego López Mateos
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Shi J, Pei Y, Yu Q, Dong H. Progress in the study of parvovirus entry pathway. Virol J 2023; 20:61. [PMID: 37016419 PMCID: PMC10072039 DOI: 10.1186/s12985-023-02016-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
A group of DNA viruses called parvoviruses that have significant effects on cancer therapy and genetic engineering applications. After passing through the cell membrane to reach the cytosol, it moves along the microtubule toward the nuclear membrane. The nuclear localization signal (NLS) is recognized by importin-beta (impβ) and other proteins from the complex outside the nuclear membrane and binds to enter the nucleus via the nuclear pore complex (NPC). There are two main pathways for viruses to enter the nucleus. The classical pathway is through the interaction of imp α and impβ with NLS via NPC. The other is the NPC mediated by the combination of impβ and it. While the capsid is introduced into the nucleus through classical nuclear transduction, there is also a transient nuclear membrane dissolution leading to passive transport into the nucleus, which has been proposed in recent years. This article mainly discusses several nuclear entry pathways and related proteins, providing a reference for subsequent research on viral entry pathways.
Collapse
Affiliation(s)
- Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Yifeng Pei
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Qian Yu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|