1
|
De A, Hoang CV, Escudero V, Armas AM, Echavarri‐Erasun C, González‐Guerrero M, Jordá L. Combating plant diseases through transition metal allocation. THE NEW PHYTOLOGIST 2025; 245:1833-1842. [PMID: 39707630 PMCID: PMC11798897 DOI: 10.1111/nph.20366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Understanding how plants fend-off invading microbes is essential for food security and the economy of large parts of the world. Consequently, a sustained and dedicated effort has been directed at unveiling how plants protect themselves from invading microbes. Major defense hormone signaling pathways have been characterized, the identity of many immune response-triggering molecules as well as many of their receptors have been determined, and the mechanisms of pathogen-host arms race are being studied. In recent years, evidence for a new layer of plant innate immunity involving transition metals has been brought forward. This would link plant metal nutrition with plant immune responses and open up possible new strategies for pathogen control involving metal fertilizers instead of pesticides. In this review, we outline our current understanding of metal-mediated plant immune response and indicate the future avenues of exploration of this topic.
Collapse
Affiliation(s)
- Aishee De
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
| | - Cuong V. Hoang
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
| | - Alejandro M. Armas
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
| | - Carlos Echavarri‐Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
| | - Manuel González‐Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid28040MadridSpain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA/CSIC), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC)28223Pozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid28040MadridSpain
| |
Collapse
|
2
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
3
|
Sun J, Zhao J, Liu M, Li J, Cheng J, Li W, Yuan M, Xiao S, Xue C. SreC-dependent adaption to host iron environments regulates the transition of trophic stages and developmental processes of Curvularia lunata. MOLECULAR PLANT PATHOLOGY 2024; 25:e13444. [PMID: 38481338 PMCID: PMC10938068 DOI: 10.1111/mpp.13444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiamei Zhao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Miaomiao Liu
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiayang Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jie Cheng
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Wenling Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Mingyue Yuan
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
- Section of Microbial Ecology, Department of BiologyLund UniversityLundSweden
| | - Shuqin Xiao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Chunsheng Xue
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| |
Collapse
|
4
|
Jafra S, Jabłońska M, Maciąg T, Matuszewska M, Borowicz M, Prusiński M, Żmudzińska W, Thiel M, Czaplewska P, Krzyżanowska DM, Czajkowski R. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environ Microbiol 2024; 26:e16559. [PMID: 38151794 DOI: 10.1111/1462-2920.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.
Collapse
Affiliation(s)
- Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcin Borowicz
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Michał Prusiński
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
5
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
6
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Gómez-Garzón C, Payne SM. Divide and conquer: genetics, mechanism, and evolution of the ferrous iron transporter Feo in Helicobacter pylori. Front Microbiol 2023; 14:1219359. [PMID: 37469426 PMCID: PMC10353542 DOI: 10.3389/fmicb.2023.1219359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Feo is the most widespread and conserved system for ferrous iron uptake in bacteria, and it is important for virulence in several gastrointestinal pathogens. However, its mechanism remains poorly understood. Hitherto, most studies regarding the Feo system were focused on Gammaproteobacterial models, which possess three feo genes (feoA, B, and C) clustered in an operon. We found that the human pathogen Helicobacter pylori possesses a unique arrangement of the feo genes, in which only feoA and feoB are present and encoded in distant loci. In this study, we examined the functional significance of this arrangement. Methods Requirement and regulation of the individual H. pylori feo genes were assessed through in vivo assays and gene expression profiling. The evolutionary history of feo was inferred via phylogenetic reconstruction, and AlphaFold was used for predicting the FeoA-FeoB interaction. Results and Discussion Both feoA and feoB are required for Feo function, and feoB is likely subjected to tight regulation in response to iron and nickel by Fur and NikR, respectively. Also, we established that feoA is encoded in an operon that emerged in the common ancestor of most, but not all, helicobacters, and this resulted in feoA transcription being controlled by two independent promoters. The H. pylori Feo system offers a new model to understand ferrous iron transport in bacterial pathogens.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Dutta K, Shityakov S, Maruyama F. DSF inactivator RpfB homologous FadD upregulated in Bradyrhizobium japonicum under iron limiting conditions. Sci Rep 2023; 13:8701. [PMID: 37248242 DOI: 10.1038/s41598-023-35487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Phytopathogenic bacteria Xanthomonas campestris pv. campestris (Xcc) causes black rot and other plant diseases. Xcc senses diffusible signal factor (DSF) as a quorum-sensing (QS) signal that mediates mainly iron uptake and virulence. RpfB deactivates DSF in this DSF-QS circuit. We examined differential gene expression profiles of Bradyrhizobium japonicum under low versus high iron conditions and found that fadD and irr were upregulated under low iron (log2 fold change 0.825 and 1.716, respectively). In addition to having similar protein folding patterns and functional domain similarities, FadD shared 58% sequence similarity with RpfB of Xcc. The RpfB-DSF and FadD-DSF complexes had SWISSDock molecular docking scores of - 8.88 kcal/mol and - 9.85 kcal/mol, respectively, and the 100 ns molecular dynamics simulation results were in accord with the docking results. However, significant differences were found between the binding energies of FadD-DSF and RpfB-DSF, indicating possible FadD-dependent DSF turnover. The protein-protein interaction network showed that FadD connected indirectly with ABC transporter permease (ABCtp), which was also upregulated (log2 fold change 5.485). We speculate that the low iron condition may be a mimetic environmental stimulus for fadD upregulation in B. japonicum to deactivate DSF, inhibit iron uptake and virulence of DSF-producing neighbors. This finding provides a new option of using B. japonicum or a genetically improved B. japonicum as a potential biocontrol agent against Xcc, with the added benefit of plant growth-promoting properties.
Collapse
Affiliation(s)
- Kunal Dutta
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
9
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
10
|
Liao W, Nie W, Ahmad I, Chen G, Zhu B. The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Front Microbiol 2023; 14:1143929. [PMID: 36960293 PMCID: PMC10027721 DOI: 10.3389/fmicb.2023.1143929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
A-to-I RNA editing is a very important post-transcriptional modification or co-transcriptional modification that creates isoforms and increases the diversity of proteins. In this process, adenosine (A) in RNA molecules is hydrolyzed and deaminated into inosine (I). It is well known that ADAR (adenosine deaminase acting on RNA)-dependent A-to-I mRNA editing is widespread in animals. Next, the discovery of A-to-I mRNA editing was mediated by TadA (tRNA-specific adenosine deaminase) in Escherichia coli which is ADAR-independent event. Previously, the editing event S128P on the flagellar structural protein FliC enhanced the bacterial tolerance to oxidative stress in Xoc. In addition, the editing events T408A on the enterobactin iron receptor protein XfeA act as switches by controlling the uptake of Fe3+ in response to the concentration of iron in the environment. Even though bacteria have fewer editing events, the great majority of those that are currently preserved have adaptive benefits. Interestingly, it was found that a TadA-independent A-to-I RNA editing event T408A occurred on xfeA, indicating that there may be other new enzymes that perform a function like TadA. Here, we review recent advances in the characteristics, functions, and adaptations of editing in bacteria.
Collapse
Affiliation(s)
- Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenhan Nie,
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Bo Zhu,
| |
Collapse
|
11
|
Taheri P. Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radic Biol Med 2022; 191:137-149. [PMID: 36075546 DOI: 10.1016/j.freeradbiomed.2022.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of oxygen and nitrogen radicals and their derivatives, known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), occurs throughout various phases of plant growth in association with biotic and abiotic stresses. One of the consequences of environmental stresses is disruption of homeostasis between production and scavenging of ROS and RNS, which leads to nitro-oxidative burst and affects other defense-related mechanisms, such as polyamines levels, phenolics, lignin and callose as defense components related to plant cell wall reinforcement. Although this subject has attracted huge interest, the cross-talk between these signaling molecules and iron, as a main metal element involved in the activity of various enzymes and numerous vital processes in the living cells, remains largely unexplored. Therefore, it seems necessary to pay more in depth attention to the mechanisms of plant resistance against various environmental stimuli for designing novel and effective plant protection strategies. This review is focused on advances in recent knowledge related to the role of ROS, RNS, and association of these signaling molecules with iron in plant immunity. Furthermore, the role of cell wall fortification as a main physical barrier involved in plant defense have been discussed in association with reactive species and iron ions.
Collapse
Affiliation(s)
- Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Gu Q, Wang Y, Zhao X, Yuan B, Zhang M, Tan Z, Zhang X, Chen Y, Wu H, Luo Y, Keller NP, Gao X, Ma Z. Inhibition of histone acetyltransferase GCN5 by a transcription factor FgPacC controls fungal adaption to host-derived iron stress. Nucleic Acids Res 2022; 50:6190-6210. [PMID: 35687128 PMCID: PMC9226496 DOI: 10.1093/nar/gkac498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Poaceae plants can locally accumulate iron to suppress pathogen infection. It remains unknown how pathogens overcome host-derived iron stress during their successful infections. Here, we report that Fusarium graminearum (Fg), a destructive fungal pathogen of cereal crops, is challenged by host-derived high-iron stress. Fg infection induces host alkalinization, and the pH-dependent transcription factor FgPacC undergoes a proteolytic cleavage into the functional isoform named FgPacC30 under alkaline host environment. Subsequently FgPacC30 binds to a GCCAR(R = A/G)G element at the promoters of the genes involved in iron uptake and inhibits their expression, leading to adaption of Fg to high-iron stress. Mechanistically, FgPacC30 binds to FgGcn5 protein, a catalytic subunit of Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, leading to deregulation of histone acetylation at H3K18 and H2BK11, and repression of iron uptake genes. Moreover, we identified a protein kinase FgHal4, which is highly induced by extracellular high-iron stress and protects FgPacC30 against 26S proteasome-dependent degradation by promoting FgPacC30 phosphorylation at Ser2. Collectively, this study uncovers a novel inhibitory mechanism of the SAGA complex by a transcription factor that enables a fungal pathogen to adapt to dynamic microenvironments during infection.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Mengxuan Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Xinyue Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
15
|
Priority Effects in the Apple Flower Determine If the Siderophore Desferrioxamine Is a Virulence Factor for Erwinia amylovora CFBP1430. Appl Environ Microbiol 2022; 88:e0243321. [PMID: 35285239 PMCID: PMC9004392 DOI: 10.1128/aem.02433-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is crucial for bacterial growth and virulence. Under iron-deficiency bacteria produce siderophores, iron chelators that facilitate the iron uptake into the cell via specific receptors. Erwinia amylovora, the causative agent of fire blight, produces hydroxamate-type desferrioxamine siderophores (DFO). The presented study reassesses the impact of DFO as a virulence factor of E. amylovora during its epiphytic phase on the apple flower. When inoculated in semisterile Golden Delicious flowers no difference in replication and induction of calyx necrosis could be observed between E. amylovora CFBP1430 siderophore synthesis (DfoA) or uptake (FoxR receptor) mutants and the parental strain. In addition, mutant strains only weakly induced a foxR promoter-gfpmut2 reporter construct in the flowers. When analyzing the replication of the receptor mutant in apple flowers harboring an established microbiome, either naturally, in case of orchard flowers, or by pre-inoculation of semisterile greenhouse flowers, it became evident that the mutant strain had a significantly reduced replication compared to the parental strain. The results suggest that apple flowers per se are not an iron-limiting environment for E. amylovora and that DFO is an important competition factor for the pathogen in precolonized flowers. IMPORTANCE Desferrioxamine is a siderophore produced by the fire blight pathogen E. amylovora under iron-limited conditions. In the present study, no or only weak induction of an iron-regulated promoter-GFP reporter was observed on semisterile apple flowers, and siderophore synthesis or uptake (receptor) mutants exhibited colonization of the flower and necrosis induction at parental levels. Reduced replication of the receptor mutant was observed when the flowers were precolonized by microorganisms. The results indicate that apple flowers are an iron-limited environment for E. amylovora only if precolonization with microorganisms leads to iron competition. This is an important insight for the timing of biocontrol treatments.
Collapse
|
16
|
Abstract
Iron acquisition is essential for almost all living organisms. In certain environments, ferrous iron is the most prevalent form of this element. Feo is the most widespread system for ferrous iron uptake in bacteria and is critical for virulence in some species. The canonical architecture of Feo consists of a large transmembrane nucleoside triphosphatase (NTPase) protein, FeoB, and two accessory cytoplasmic proteins, FeoA and FeoC. The role of the latter components and the mechanism by which Feo orchestrates iron transport are unclear. In this study, we conducted a comparative analysis of Feo protein sequences to gain insight into the evolutionary history of this transporter. We identified instances of how horizontal gene transfer contributed to the evolution of Feo. Also, we found that FeoC, while absent in most lineages, is largely present in the Gammaproteobacteria group, although its sequence is poorly conserved. We propose that FeoC, which may couple FeoB NTPase activity with pore opening, was an ancestral element that has been dispensed with through mutations in FeoA and FeoB in some lineages. We provide experimental evidence supporting this hypothesis by isolating and characterizing FeoC-independent mutants of the Vibrio cholerae Feo system. Also, we confirmed that the closely related species Shewanella oneidensis does not require FeoC; thus, Vibrio FeoC sequences may resemble transitional forms on an evolutionary pathway toward FeoC-independent transporters. Finally, by combining data from our bioinformatic analyses with this experimental evidence, we propose an evolutionary model for the Feo system in bacteria. IMPORTANCE Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions. The large transmembrane protein FeoB provides the channel for the transport of iron into the bacterial cell, but the functions of the two small, required accessory proteins FeoA and FeoC are not well understood. Analysis of the evolution of this transporter shows that FeoC is poorly conserved and has been lost from many bacterial lineages. Experimental evidence indicates that FeoC may have different functions in different species that retain this protein, and the loss of FeoC is promoted by mutations in FeoA or by the fusion of FeoA and FeoB.
Collapse
|
17
|
Przepiora T, Figaj D, Bogucka A, Fikowicz-Krosko J, Czajkowski R, Hugouvieux-Cotte-Pattat N, Skorko-Glonek J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. Int J Mol Sci 2022; 23:ijms23020697. [PMID: 35054882 PMCID: PMC8775594 DOI: 10.3390/ijms23020697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology.
Collapse
Affiliation(s)
- Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Aleksandra Bogucka
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland;
| | - Jakub Fikowicz-Krosko
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiologie Adaptation et Pathogénie, Université Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Campus LyonTech-la Doua Bâtiment André Lwoff 10 rue Raphaël Dubois 69622, F69622 Villeurbanne, France;
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
- Correspondence:
| |
Collapse
|
18
|
Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach. J Proteomics 2021; 248:104352. [PMID: 34411763 DOI: 10.1016/j.jprot.2021.104352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Corynebacterium pseudotuberculosis (C.pseudotuberculosis) is a zoonotic pathogen that can cause cheese lymphadenitis in goats. In order to obtain detailed information about the pathogenesis and host immune response of goats infected with C.pseudotuberculosis, we used tandem mass tag (TMT)-labeling proteomic analysis to detect differentially expressed proteins (DEPs) in dairy goats infected with C.pseudotuberculosis, and confirmed the altered proteins with western blot. A total of 6611 trusted proteins were identified, and 126 proteins were differentially abundant. Gene ontology (GO) analysis showed that all DEPs were annotated as biological processes, cell composition, and molecular functions. Biological processes mainly involve acute inflammation and immune response; cell components mainly involve extracellular areas and high-density lipoprotein particles; molecular functions are mainly antigen binding, ferric iron binding, and iron ion binding. KEGG analysis showed that a total of 102 pathways were significantly enriched, mainly lysosomes, phagosomes, and mineral absorption pathways. Our findings provided the relevant knowledge of spleen protein levels in goats infected with C.pseudotuberculosis and revealed the complex molecular pathways and immune response mechanisms in the process of C.pseudotuberculosis infection. SIGNIFICANCE: C.pseudotuberculosis is the most fatal infectious disease in dairy goats, causing huge economic losses. However, the molecular pathways and immune response mechanisms of C.pseudotuberculosis infection in goats remain unclear. Therefore, we conducted a comparative quantitative proteomics study on dairy goats infected with C.pseudotuberculosis. The results provide a basis for better understanding the complexity of C.pseudotuberculosis infection, reveal the complex molecular pathways and immune response mechanisms in C.pseudotuberculosis infection, and provide some clues for identifying potential therapeutic targets. This is the first report to show that C.pseudotuberculosis infection in dairy goats can disrupt the immune response mechanism and lead to massive immune cell death. The study provided new findings on the interaction between C.pseudotuberculosis and the host.
Collapse
|
19
|
Zhang M, Zhang Y, Han X, Wang J, Yang Y, Ren B, Xia M, Li G, Fang R, He H, Jia Y. Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. AMB Express 2021; 11:129. [PMID: 34533621 PMCID: PMC8448808 DOI: 10.1186/s13568-021-01290-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Members of the Enterobacter genus are gram-negative bacteria, which are used as plant growth-promoting bacteria, and increasingly recovered from economic plants as emerging pathogens. A new Enterobacter mori strain, designated CX01, was isolated as an emerging bacterial pathogen of a recent outbreak of kiwifruit canker-like disease in China. The main symptoms associated with this syndrome are bleeding cankers on the trunk and branch, and brown leaf spots. The genome sequence of E. mori CX01 was determined as a single chromosome of 4,966,908 bp with 4640 predicted open reading frames (ORFs). To better understand the features of the genus and its potential pathogenic mechanisms, five available Enterobacter genomes were compared and a pan-genome of 4870 COGs with 3158 core COGs were revealed. An important feature of the E. mori CX01 genome is that it lacks a type III secretion system often found in pathogenic bacteria, instead it is equipped with type I, II, and VI secretory systems. Besides, the genes encoding putative virulence effectors, two-component systems, nutrient acquisition systems, proteins involved in phytohormone synthesis, which may contribute to the virulence and adaption to the host plant niches are included. The genome sequence of E. mori CX01 has high similarity with that of E. mori LMG 25,706, though the rearrangements occur throughout two genomes. Further pathogenicity assay showed that both strains can either invade kiwifruit or mulberry, indicating they may have similar host range. Comparison with a closely related isolate enabled us to understand its pathogenesis and ecology.
Collapse
|
20
|
Gorshkov V, Parfirova O, Petrova O, Gogoleva N, Kovtunov E, Vorob’ev V, Gogolev Y. The Knockout of Enterobactin-Related Gene in Pectobacterium atrosepticum Results in Reduced Stress Resistance and Virulence towards the Primed Plants. Int J Mol Sci 2021; 22:ijms22179594. [PMID: 34502502 PMCID: PMC8431002 DOI: 10.3390/ijms22179594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Siderophores produced by microorganisms to scavenge iron from the environment have been shown to contribute to virulence and/or stress resistance of some plant pathogenic bacteria. Phytopathogenic bacteria of Pectobacterium genus possess genes for the synthesis of siderophore enterobactin, which role in plant-pathogen interactions has not been elucidated. In the present study we characterized the phenotype of the mutant strain of Pba deficient for the enterobactin-biosynthetic gene entA. We showed that enterobactin may be considered as a conditionally beneficial virulence factor of Pba. The entA knockout did not reduce Pba virulence on non-primed plants; however, salicylic acid-primed plants were more resistant to ΔentA mutant than to the wild type Pba. The reduced virulence of ΔentA mutant towards the primed plants is likely explained by its compromised resistance to oxidative stress.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Evgeny Kovtunov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Vladimir Vorob’ev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
21
|
Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. mSphere 2021; 6:e0037621. [PMID: 34378986 PMCID: PMC8386435 DOI: 10.1128/msphere.00376-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens is considered the most successful biological control agent due to its ability to colonize the plant rhizosphere and phyllosphere where it outgrows plant pathogens by competition, antibiosis, and inducing plant defense. Its antimicrobial function is thought to depend on a diverse spectrum of secondary metabolites, including peptides, cyclic lipopeptides, and polyketides, which have been shown to target mostly fungal pathogens. In this study, we isolated and characterized the catecholate siderophore bacillibactin by B. amyloliquefaciens MBI600 under iron-limiting conditions and we further identified its potential antibiotic activity against plant pathogens. Our data show that bacillibactin production restrained in vitro and in planta growth of the nonsusceptible (to MBI600) pathogen Pseudomonas syringae pv. tomato. Notably, it was also related to increased antifungal activity of MBI600. In addition to bacillibactin biosynthesis, iron starvation led to upregulation of specific genes involved in microbial fitness and competition. IMPORTANCE Siderophores have mostly been studied concerning their contribution to the fitness and virulence of bacterial pathogens. In the present work, we isolated and characterized for the first time the siderophore bacillibactin from a commercial bacterial biocontrol agent. We proved that its presence in the culture broth has significant biocontrol activity against nonsusceptible bacterial and fungal phytopathogens. In addition, we suggest that its activity is due to a new mechanism of action, that of direct antibiosis, rather than by competition through iron scavenging. Furthermore, we showed that bacillibactin biosynthesis is coregulated with the transcription of antimicrobial metabolite synthases and fitness regulatory genes that maximize competition capability. Finally, this work highlights that the efficiency and range of existing bacterial biocontrol agents can be improved and broadened via the rational modification of the growth conditions of biocontrol organisms.
Collapse
|
22
|
Nakahara H, Mori K, Mori T, Matsuzoe N. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium. J Microbiol Methods 2021; 186:106233. [PMID: 33965508 DOI: 10.1016/j.mimet.2021.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
Ralstonia solanacearum is a soil-borne pathogen that causes bacterial wilt in plants. The wild-type strain of R. solanacearum undergoes spontaneous phenotype conversion (PC), from a fluidal to non-fluidal colony morphology. PC mutants are non-pathogenic due to reduced virulence factors, and can control wilt diseases as biological control agents. The induction factors of PC in R. solanacearum are currently unclear. Here, we investigated the effect of iron treatment on bacterial growth of wild-type strain and PC mutant, and PC of the wild-type strain in liquid medium. Interestingly, PC was frequently induced in the single cultured wild-type strain by iron treatment; however, PC was not induced in the co-culture. In a co-culture of both strains, the PC mutant showed increased growth compared to the wild-type strain by iron treatment. Furthermore, we investigated the effects of iron treatment on the bacterial growth and PC of the wild-type strain under different culture conditions of medium type (MM broth, BG broth, and water medium), iron compounds, and pH. In BG broth, PC occurred frequently regardless of iron treatment. In MM broth, the optimal conditions for high frequency induction of PC by iron treatments were treatment of iron (III) EDTA, and under pH 7-8. Conversely, PC was not induced by iron treatment in water medium and in MM broth under pH 5 conditions. Common to the culture conditions wherein PC was not induced by iron treatment, the bacterial density of the wild-type strain was as low as 106 CFU mL-1 or less. Finally, we investigated the effects on bacterial growth and PC of the wild-type strain by the iron treatment and addition of culture filtrate after cultivation of the wild-type strain at high concentration. In medium containing only the culture filtrate, PC did not occur. However, in medium containing the culture filtrate and iron, PC occurred frequently. Our results thus suggest that high-density growth of the wild-type strain as well as the presence of iron are involved in inducing PC in R. solanacearum.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Arid Land Research Center, Tottori University, Hamasaka 1390, Tottori 680-0001, Japan.
| | - Kento Mori
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Tsukide 3-1-100, Higashi-ku, Kumamoto 862-8502, Japan
| | - Taro Mori
- Faculty of Education, Shiga University, Hiratsu 2-5-1, Otsu, Shiga 520-0862, Japan
| | - Naotaka Matsuzoe
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Tsukide 3-1-100, Higashi-ku, Kumamoto 862-8502, Japan
| |
Collapse
|
23
|
Zeng Y, Charkowski AO. The Role of ATP-Binding Cassette Transporters in Bacterial Phytopathogenesis. PHYTOPATHOLOGY 2021; 111:600-610. [PMID: 33225831 DOI: 10.1094/phyto-06-20-0212-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria use selective membrane transporting strategies to support cell survival in different environments. Of the membrane transport systems, ATP-binding cassette (ABC) transporters, which utilize the energy of ATP hydrolysis to deliver substrate across the cytoplasmic membrane, are the largest and most diverse superfamily. These transporters import nutrients, export molecules, and are required for diverse cell functions, including cell division and morphology, gene regulation, surface motility, chemotaxis, and interspecies competition. Phytobacterial pathogens encode numerous ABC transporter homologs compared with related nonphytopathogens, with up to 160 transporters per genome, suggesting that plant pathogens must be able to import or respond to a greater number of molecules compared with saprophytes or animal pathogens. Despite their importance, ABC transporters have been little examined in plant pathogens. To understand bacterial phytopathogenesis and evolution, we need to understand the roles that ABC transporters play in plant-microbe interactions. In this review, we outline a multitude of roles that bacterial ABC transporters play, using both plant and animal pathogens as examples, to emphasize the importance of exploring these transporters in phytobacteriology.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
24
|
A Siderophore Analog of Fimsbactin from Acinetobacter Hinders Growth of the Phytopathogen Pseudomonas syringae and Induces Systemic Priming of Immunity in Arabidopsis thaliana. Pathogens 2020; 9:pathogens9100806. [PMID: 33007866 PMCID: PMC7600244 DOI: 10.3390/pathogens9100806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Siderophores produced in soil by plant growth-promoting rhizobacteria (PGPRs) play several roles, including nutrient mobilizers and can be useful as plants defense elicitors. We investigated the role of a synthetic mixed ligand bis-catechol-mono-hydroxamate siderophore (SID) that mimics the chemical structure of a natural siderophore, fimsbactin, produced by Acinetobacter spp. in the resistance against the phytopathogen Pseudomonas syringaepv tomato DC3000 (Pst DC3000), in Arabidopsis thaliana. We first tested the antibacterial activity of SID against Pst DC3000 in vitro. After confirming that SID had antibacterial activity against Pst DC3000, we tested whether the observed in vitro activity could translate into resistance of Arabidopsis to Pst DC3000, using bacterial loads as endpoints in a plant infection model. Furthermore, using quantitative polymerase chain reaction, we explored the molecular actors involved in the resistance of Arabidopsis induced by SID. Finally, to assure that SID would not interfere with PGPRs, we tested in vitro the influence of SID on the growth of a reference PGPR, Bacillus subtilis. We report here that SID is an antibacterial agent as well as an inducer of systemic priming of resistance in A. thaliana against Pst DC3000, and that SID can, at the same time, promote growth of a PGPR.
Collapse
|
25
|
Herlihy JH, Long TA, McDowell JM. Iron homeostasis and plant immune responses: Recent insights and translational implications. J Biol Chem 2020; 295:13444-13457. [PMID: 32732287 DOI: 10.1074/jbc.rev120.010856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.
Collapse
Affiliation(s)
- John H Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.
| |
Collapse
|
26
|
Fu M, Su H, Su Z, Yin Z, Jin J, Wang L, Zhang Q, Xu X. Transcriptome analysis of Corynebacterium pseudotuberculosis-infected spleen of dairy goats. Microb Pathog 2020; 147:104370. [PMID: 32653437 DOI: 10.1016/j.micpath.2020.104370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Caseous lymphadenitis is a chronic disease of goats caused by Corynebacterium pseudotuberculosis (C.pseudotuberculosis) which causes great harm to the dairy goats industry. In order to obtain detailed information about the pathogenesis and host immune response in C.pseudotuberculosis-infected goats, in this study, the gene expression difference of spleen tissue after infection with C.pseudotuberculosis was analyzed by high-throughput sequencing. Transcripts obtained over 412 700 462 clean reads after reassembly were 21 343 genes detected, of which 14 720 were known genes and 7623 new genes were predicted. There were 448 up-regulated and 519 down-regulated differentially expressed genes (DEGs). Gene Ontology (GO) analysis indicated that all of the DEGs were annotated into biological process, cellular component and molecular function. Most of these unigenes are annotated in cellular processes, the cell and binding. KEGG analysis of the DEGs showed that a total of 8733 DEGs unigenes were annotated into 459 pathways classified into 6 main categories. Most of these annotated unigenes were related to immune system response to the infectious diseases pathways. In addition, 14 DEGs were verified by quantitative real-time PCR. As the first, in vivo, RNAseq analysis of dairy goats and C.pseudotuberculosis infection, this study provides knowledge about the transcriptomics of spleen in C.pseudotuberculosis-infected goats, from which a complex molecular pathways and immune response mechanism are involved in C.pseudotuberculosis infection.
Collapse
Affiliation(s)
- Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zhanqiang Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
27
|
Lu Y, Sun J, Gao Y, Liu K, Yuan M, Gao W, Wang F, Fu D, Chen N, Xiao S, Xue C. The key iron assimilation genes ClFTR1, ClNPS6 were crucial for virulence of Curvularia lunata via initiating its appressorium formation and virulence factors. Environ Microbiol 2020; 23:613-627. [PMID: 32452607 DOI: 10.1111/1462-2920.15101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Iron is virtually an essential nutrient for all organisms, to understand how iron contributes to virulence of plant pathogenic fungi, we identified ClFTR1 and ClNPS6 in maize pathogen Curvularia lunata (Cochliobolus lunatus) in this study. Disruption of ClNPS6 significantly impaired siderophore biosynthesis. ClFTR1 and ClNPS6 did mediate oxidative stress but had no significant impact on vegetative growth, conidiation, cell wall integrity and sexual reproduction. Conidial germination delayed and appressoria formation reduced in ΔClftr1 comparing with wild type (WT) CX-3. Genes responsible for conidial germination, appressoria formation, non-host selective toxin biosynthesis and cell wall degrading enzymes were also downregulated in the transcriptome of ΔClftr1 and ΔClnps6 compared with WT. The conidial development, toxin biosynthesis and polygalacturonase activity were impaired in the mutant strains with ClFTR1 and ClNPS6 deletion during their infection to maize. ClFTR1 and ClNPS6 were upregulated expression at 12-24 and 48-120 hpi in WT respectively. ClFTR1 positively regulated conidial germination, appressoria formation in the biotrophy-specific phase. ClNPS6 positively regulates non-host selective toxin biosynthesis and cell wall degrading enzyme activity in the necrotrophy-specific phase. Our results indicated that ClFTR1 and ClNPS6 were key genes of pathogen known to conidia development and virulence factors.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yibo Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
28
|
Yuan X, Zeng Q, Khokhani D, Tian F, Severin GB, Waters CM, Xu J, Zhou X, Sundin GW, Ibekwe AM, Liu F, Yang CH. A feed-forward signalling circuit controls bacterial virulence through linking cyclic di-GMP and two mechanistically distinct sRNAs, ArcZ and RsmB. Environ Microbiol 2019; 21:2755-2771. [PMID: 30895662 DOI: 10.1111/1462-2920.14603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Dickeya dadantii is a plant pathogen that causes soft rot disease on vegetable and potato crops. To successfully cause infection, this pathogen needs to coordinately modulate the expression of genes encoding several virulence determinants, including plant cell wall degrading enzymes (PCWDEs), type III secretion system (T3SS) and flagellar motility. Here, we uncover a novel feed-forward signalling circuit for controlling virulence. Global RNA chaperone Hfq interacts with an Hfq-dependent sRNA ArcZ and represses the translation of pecT, encoding a LysR-type transcriptional regulator. We demonstrate that the ability of ArcZ to be processed to a 50 nt 3'- end fragment is essential for its regulation of pecT. PecT down-regulates PCWDE and the T3SS by repressing the expression of a global post-transcriptional regulator- (RsmA-) associated sRNA encoding gene rsmB. In addition, we show that the protein levels of two cyclic di-GMP (c-di-GMP) diguanylate cyclases (DGCs), GcpA and GcpL, are repressed by Hfq. Further studies show that both DGCs are essential for the Hfq-mediated post-transcriptional regulation on RsmB. Overall, our report provides new insights into the interplays between ubiquitous signalling transduction systems that were most studied independently and sheds light on multitiered regulatory mechanisms for a precise disease regulation in bacteria.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.,Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Fang Tian
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jingsheng Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiang Zhou
- School of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Abasiofiok M Ibekwe
- Agricultural Research Service-US Salinity Laboratory, United States Department of Agriculture, Riverside, CA, 92507, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| |
Collapse
|
29
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
30
|
Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. MOLECULAR PLANT PATHOLOGY 2019; 20:287-306. [PMID: 30267562 PMCID: PMC6637903 DOI: 10.1111/mpp.12754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors.
Collapse
Affiliation(s)
- Kévin Royet
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Nicolas Parisot
- University of LyonINSA‐Lyon, INRA, BF2I, UMR0203F‐69621VilleurbanneFrance
| | - Agnès Rodrigue
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Erwan Gueguen
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| | - Guy Condemine
- University of LyonUniversité Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et PathogénieF‐69622VilleurbanneFrance
| |
Collapse
|
31
|
Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, Devreese B. Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in Streptomyces scabies. J Proteome Res 2018; 17:3837-3852. [DOI: 10.1021/acs.jproteome.8b00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Samuel Jourdan
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University Bakersfield, Bakersfield, California 93311-1022, United States
| | - Benoit Deflandre
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PAHM, Pieterse CMJ. Iron and Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:355-375. [PMID: 28598721 DOI: 10.1146/annurev-phyto-080516-035537] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of iron homeostasis is a major strategy in host-pathogen interactions. Plants use iron-withholding strategies to reduce pathogen virulence or to locally increase iron levels to activate a toxic oxidative burst. Some plant pathogens counteract such defenses by secreting iron-scavenging siderophores that promote iron uptake and alleviate iron-regulated host immune responses. Mutualistic root microbiota can also influence plant disease via iron. They compete for iron with soil-borne pathogens or induce a systemic resistance that shares early signaling components with the root iron-uptake machinery. This review describes the progress in our understanding of the role of iron homeostasis in both pathogenic and beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Pauline L Trapet
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Sophie Kruijs
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| |
Collapse
|
33
|
Moreira LM, Soares MR, Facincani AP, Ferreira CB, Ferreira RM, Ferro MIT, Gozzo FC, Felestrino ÉB, Assis RAB, Garcia CCM, Setubal JC, Ferro JA, de Oliveira JCF. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection. BMC Microbiol 2017; 17:155. [PMID: 28693412 PMCID: PMC5504864 DOI: 10.1186/s12866-017-1063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. RESULTS For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. CONCLUSIONS This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.
Collapse
Affiliation(s)
- Leandro M Moreira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil. .,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Márcia R Soares
- Departamento de Bioquímica (DBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Agda P Facincani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil.
| | - Cristiano B Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Rafael M Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Maria I T Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Fábio C Gozzo
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica B Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata A B Assis
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Camila Carrião M Garcia
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João C Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jesus A Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Julio C F de Oliveira
- Departamento de Ciências Biológicas (DCB), Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
34
|
Abstract
Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion.
Collapse
|
35
|
Zhang H, Sonnewald U. Differences and commonalities of plant responses to single and combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:839-855. [PMID: 28370754 DOI: 10.1111/tpj.13557] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/21/2023]
Abstract
In natural or agricultural environments, plants are constantly exposed to a wide range of biotic and abiotic stresses. Given the forecasted global climate changes, plants will cope with heat waves, drought periods and pathogens at the same time or consecutively. Heat and drought cause opposing physiological responses, while pathogens may or may not profit from climate changes depending on their lifestyle. Several studies have been conducted to find stress-specific signatures or stress-independent commonalities. Previously this has been done by comparing different single stress treatments. This approach has been proven difficult since most studies, comparing single and combined stress conditions, have come to the conclusion that each stress treatment results in specific transcriptional changes. Although transcriptional changes at the level of individual genes are highly variable and stress-specific, central metabolic and signaling responses seem to be common, often leading to an overall reduced plant growth. Understanding how specific transcriptional changes are linked to stress adaptations and identifying central hubs controlling this interaction will be the challenge for the coming years. In this review, we will summarize current knowledge on plant responses to different individual and combined stresses and try to find a common thread potentially underlying these responses. We will begin with a brief summary of known physiological, metabolic, transcriptional and hormonal responses to individual stresses, elucidate potential commonalities and conflicts and finally we will describe results obtained during combined stress experiments. Here we will concentrate on simultaneous application of stress conditions but we will also touch consequences of sequential stress treatments.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
36
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
37
|
Sharma A, Sharma D, Verma SK. Proteome wide identification of iron binding proteins of Xanthomonas translucens pv. undulosa: focus on secretory virulent proteins. Biometals 2017; 30:127-141. [DOI: 10.1007/s10534-017-9991-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/08/2017] [Indexed: 12/19/2022]
|
38
|
Passalacqua KD, Charbonneau ME, O'Riordan MXD. Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0027-2015. [PMID: 27337445 PMCID: PMC4922512 DOI: 10.1128/microbiolspec.vmbf-0027-2015+10.1128/microbiolspec.vmbf-0027-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marie-Eve Charbonneau
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Passalacqua KD, Charbonneau ME, O'Riordan MXD. Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0027-2015. [PMID: 27337445 PMCID: PMC4922512 DOI: 10.1128/microbiolspec.vmbf-0027-2015 10.1128/microbiolspec.vmbf-0027-2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 01/23/2024] Open
Abstract
Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion.
Collapse
Affiliation(s)
- Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marie-Eve Charbonneau
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, Mazurier S, Lemanceau P, Wendehenne D, Besson-Bard A. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions. PLANT PHYSIOLOGY 2016; 171:675-93. [PMID: 26956666 PMCID: PMC4854674 DOI: 10.1104/pp.15.01537] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/03/2016] [Indexed: 05/20/2023]
Abstract
Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Remarkably, apo-pyoverdine abolished the iron-deficiency phenotype and restored the growth of plants maintained in the iron-deprived medium. In contrast to a P. fluorescens C7R12 strain impaired in apo-pyoverdine production, the wild-type C7R12 reduced the accumulation of anthocyanins in plants grown in iron-deficient conditions. Under this condition, apo-pyoverdine modulated the expression of around 2,000 genes. Notably, apo-pyoverdine positively regulated the expression of genes related to development and iron acquisition/redistribution while it repressed the expression of defense-related genes. Accordingly, the growth-promoting effect of apo-pyoverdine in plants grown under iron-deficient conditions was impaired in iron-regulated transporter1 and ferric chelate reductase2 knockout mutants and was prioritized over immunity, as highlighted by an increased susceptibility to Botrytis cinerea This process was accompanied by an overexpression of the transcription factor HBI1, a key node for the cross talk between growth and immunity. This study reveals an unprecedented mode of action of pyoverdine in Arabidopsis and demonstrates that its incidence on physiological traits depends on the plant iron status.
Collapse
Affiliation(s)
- Pauline Trapet
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Stéphanie Pateyron
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Sylvie Citerne
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Christian Chervin
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (P.T., A.K., D.W., A. B.-B.);Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, F-21000 Dijon, France (L.A., S.M., P.L.);Transcriptomic Platform of IPS2, Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, F-91405 Orsay, France (S.P.);Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, F-78026 Versailles, France (S.C.); andUniversité de Toulouse, Institut National Polytechnique de Toulouse-Ecole Nationale Supérieure Agronomique-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 990 Génomique et Biotechnologie des Fruits, Castanet-Tolosan, CS 32607, F-31326, France (C.C.)
| |
Collapse
|
41
|
Jiang X, Zghidi-Abouzid O, Oger-Desfeux C, Hommais F, Greliche N, Muskhelishvili G, Nasser W, Reverchon S. Global transcriptional response of Dickeya dadantii to environmental stimuli relevant to the plant infection. Environ Microbiol 2016; 18:3651-3672. [PMID: 26940633 DOI: 10.1111/1462-2920.13267] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/14/2016] [Indexed: 11/28/2022]
Abstract
Dickeya species are soft rot disease-causing bacterial plant pathogens and an emerging agricultural threat in Europe. Environmental modulation of gene expression is critical for Dickeya dadantii pathogenesis. While the bacterium uses various environmental cues to distinguish between its habitats, an intricate transcriptional control system coordinating the expression of virulence genes ensures efficient infection. Understanding of this behaviour requires a detailed knowledge of expression patterns under a wide range of environmental conditions, which is currently lacking. To obtain a comprehensive picture of this adaptive response, we devised a strategy to examine the D. dadantii transcriptome in a series of 32 infection-relevant conditions encountered in the hosts. We propose a temporal map of the bacterial response to various stress conditions and show that D. dadantii elicits complex genetic behaviour combining common stress-response genes with distinct sets of genes specifically induced under each particular stress. Comparison of our dataset with an in planta expression profile reveals the combined impact of stress factors and enables us to predict the major stress confronting D. dadantii at a particular stage of infection. We provide a comprehensive catalog of D. dadantii genomic responses to environmentally relevant stimuli, thus facilitating future studies of this important plant pathogen.
Collapse
Affiliation(s)
- Xuejiao Jiang
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Ouafa Zghidi-Abouzid
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Christine Oger-Desfeux
- Univ Lyon, Université Lyon 1, Pôle Rhône-Alpes de Bioinformatique, Département Biologie, F-69622, Villeurbanne, France
| | - Florence Hommais
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Nicolas Greliche
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Georgi Muskhelishvili
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Département Biologie, F-69622, Villeurbanne, France
| |
Collapse
|
42
|
Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biol 2016; 14:e1002352. [PMID: 26788878 PMCID: PMC4720289 DOI: 10.1371/journal.pbio.1002352] [Citation(s) in RCA: 703] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial “hubs” and their importance in phyllosphere microbiome structuring has crucial implications for plant–pathogen and microbe–microbe research and opens new entry points for ecosystem management and future targeted biocontrol. The revelation that effects can cascade through communities via “hub” microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome “keystone” pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes. Microbial interactions between kingdoms are responsible for significant microbiome variation on the surface of plants. Highly connected microbes are most important, amplifying abiotic and host factors to cause large perturbations in the structure of microbial communities. Under natural conditions, plant growth and behavior strongly depend on associated microbial communities called the microbiome. Much research has been performed to evaluate how the environment and plant genes help to determine the structure of the microbiome. Here, we show that interactions between microorganisms on plants can be responsible for large portions of observed microbial community structures on leaves. Importantly, particular microbes, termed “hub microbes” due to their central position in a microbial network, are disproportionally important in shaping microbial communities on plant hosts. We discovered fungal and oomycete hub microbes that act by suppressing the growth and diversity of other microbes—even across kingdoms—and several candidate bacterial hubs, which largely positively control the abundance of other bacteria. We also showed that factors impacting the microbial community—such as plant genotype—are strongest if they affect colonization of a hub microbe because the hub in turn affects colonization by many other microbes. Our results further suggest that hub microbes interact directly or via the microbial community. Hub microbes are thus promising targets for better understanding the effects of host genomic engineering and for future work in controlling disease-associated and beneficial host-associated microbial communities.
Collapse
Affiliation(s)
- Matthew T. Agler
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonas Ruhe
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Samuel Kroll
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sang-Tae Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eric M. Kemen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
43
|
Aznar A, Chen NWG, Thomine S, Dellagi A. Immunity to plant pathogens and iron homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:90-7. [PMID: 26475190 DOI: 10.1016/j.plantsci.2015.08.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/07/2023]
Abstract
Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity.
Collapse
Affiliation(s)
- Aude Aznar
- Institut Jean-Pierre Bourgin, UMR INRA-AgroParisTech 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Nicolas W G Chen
- Institut de Recherche en Horticulture et Semences, UMR1345 INRA-AgroCampus-Ouest, F-49045 Angers, France
| | - Sebastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette 91198, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR INRA-AgroParisTech 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France.
| |
Collapse
|
44
|
Singh K, Senadheera DB, Cvitkovitch DG. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiol 2015; 9:1283-93. [PMID: 25437189 DOI: 10.2217/fmb.14.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.
Collapse
Affiliation(s)
- Kamna Singh
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
45
|
Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci Rep 2015; 5:12165. [PMID: 26184504 PMCID: PMC4505318 DOI: 10.1038/srep12165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/12/2015] [Indexed: 01/12/2023] Open
Abstract
Rice bacterial blight (BB) is a devastating rice disease. The Xa21 gene confers a broad and persistent resistance against BB. We introduced Xa21 into Oryza sativa L ssp indica (rice 9311), through multi-generation backcrossing, and generated a nearly isogenic, blight-resistant 9311/Xa21 rice. Using next-generation sequencing, we profiled the transcriptomes of both varieties before and within four days after infection of bacterium Xanthomonas oryzae pv. oryzae. The identified differentially expressed (DE) genes and signaling pathways revealed insights into the functions of Xa21. Surprisingly, before infection 1,889 genes on 135 of the 316 signaling pathways were DE between the 9311/Xa21 and 9311 plants. These Xa21-mediated basal pathways included mainly those related to the basic material and energy metabolisms and many related to phytohormones such as cytokinin, suggesting that Xa21 triggered redistribution of energy, phytohormones and resources among essential cellular activities before invasion. Counter-intuitively, after infection, the DE genes between the two plants were only one third of that before the infection; other than a few stress-related pathways, the affected pathways after infection constituted a small subset of the Xa21-mediated basal pathways. These results suggested that Xa21 primed critically important genes and signaling pathways, enhancing its resistance against bacterial infection.
Collapse
|
46
|
Aznar A, Patrit O, Berger A, Dellagi A. Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii. MOLECULAR PLANT PATHOLOGY 2015; 16:521-8. [PMID: 25266463 PMCID: PMC6638429 DOI: 10.1111/mpp.12208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Dickeya dadantii is a plant-pathogenic enterobacterium responsible for plant soft rot disease in a wide range of hosts, including the model plant Arabidopsis thaliana. Iron distribution in infected A. thaliana was investigated at the cellular scale using the Perls'-diaminobenzidine-H2 O2 (PDH) method. Iron visualization during infection reveals a loss of iron from cellular compartments and plant cell walls. During symptom progression, two distinct zones are clearly visible: a macerated zone displaying weak iron content and a healthy zone displaying strong iron content. Immunolabelling of cell wall methylated pectin shows that pectin degradation is correlated with iron release from cell walls, indicating a strong relationship between cell wall integrity and iron in plant tissues. Using a D. dadantii lipopolysaccharide antibody, we show that bacteria are restricted to the infected tissue, and that they accumulate iron in planta. In conclusion, weak iron content is strictly correlated with bacterial cell localization in the infected tissues, indicating a crucial role of this element during the interaction. This is the first report of iron localization at the cellular level during a plant-microbe interaction and shows that PDH is a method of choice in this type of investigation.
Collapse
Affiliation(s)
- Aude Aznar
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France; Sorbonne Universités, UPMC, Université Paris 06, UFR927, F-75005, Paris, France
| | | | | | | |
Collapse
|
47
|
Aznar A, Dellagi A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3001-10. [PMID: 25934986 DOI: 10.1093/jxb/erv155] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microorganisms use siderophores to obtain iron from the environment. In pathogenic interactions, siderophores are involved in iron acquisition from the host and are sometimes necessary for the expression of full virulence. This review summarizes the main data describing the role of these iron scavengers in animal and plant defence systems. To protect themselves against iron theft, mammalian hosts have developed a hypoferremia strategy that includes siderophore-binding molecules called siderocalins. In addition to microbial ferri-siderophore sequestration, siderocalins are involved in triggering immunity. In plants, no similar mechanisms have been described and many fewer data are available, although recent advances have shed light on the role of siderophores in plant-pathogen interactions. Siderophores can trigger immunity in plants in several contexts. The most frequently described situation involving siderophores is induced systemic resistance (ISR) triggered by plant-growth-promoting rhizobacteria. Although ISR responses have been observed after treating roots with certain siderophores, the underlying mechanisms are poorly understood. Immunity can also be triggered by siderophores in leaves. Siderophore perception in plants appears to be different from the well-known perception mechanisms of other microbial compounds, known as microbe-associated molecular patterns. Scavenging iron per se appears to be a novel mechanism of immunity activation, involving complex disturbance of metal homeostasis. Receptor-specific recognition of siderophores has been described in animals, but not in plants. The review closes with an overview of the possible mechanisms of defence activation, via iron scavenging by siderophores or specific siderophore recognition by the plant host.
Collapse
Affiliation(s)
- Aude Aznar
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles Cedex, France 2 AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France Université Paris 06, Case 156,4 Place Jussieu, F-75005 Paris, France
| | - Alia Dellagi
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St Cyr (RD 10), F-78026 Versailles Cedex, France
| |
Collapse
|
48
|
Chromosomal "stress-response" domains govern the spatiotemporal expression of the bacterial virulence program. mBio 2015; 6:e00353-15. [PMID: 25922390 PMCID: PMC4436070 DOI: 10.1128/mbio.00353-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies strongly suggest that the gene expression sustaining both normal and pathogenic bacterial growth is governed by the structural dynamics of the chromosome. However, the mechanistic device coordinating the chromosomal configuration with selective expression of the adaptive traits remains largely unknown. We used a holistic approach exploring the inherent relationships between the physicochemical properties of the DNA and the expression of adaptive traits, including virulence factors, in the pathogen Dickeya dadantii (formerly Erwinia chrysanthemi). In the transcriptomes obtained under adverse conditions encountered during bacterial infection, we explored the patterns of chromosomal DNA sequence organization, supercoil dynamics, and gene expression densities, together with the long-range regulatory impacts of the abundant DNA architectural proteins implicated in pathogenicity control. By integrating these data, we identified transient chromosomal domains of coherent gene expression featuring distinct couplings between DNA thermodynamic stability, supercoil dynamics, and virulence traits. We infer that the organization of transient chromosomal domains serving specific functions acts as a fundamental device for versatile adjustment of the pathogen to environmental stress. We believe that the identification of chromosomal “stress-response” domains harboring distinct virulence traits and mediating the cellular adaptive behavior provides a breakthrough in understanding the control mechanisms of bacterial pathogenicity.
Collapse
|
49
|
Lim MH, Wu J, Yao J, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song J, Clark G, Roux SJ. Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. PLANT PHYSIOLOGY 2014; 164:2054-67. [PMID: 24550243 PMCID: PMC3982762 DOI: 10.1104/pp.113.233429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 05/20/2023]
Abstract
Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth. To clarify how the suppression of APY1 and APY2 is linked to growth inhibition, the gene expression changes that occur in seedlings when apyrase expression is suppressed were assayed by microarray and quantitative real-time-PCR analyses. The most significant gene expression changes induced by APY suppression were in genes involved in biotic stress responses, which include those genes regulating wall composition and extensibility. These expression changes predicted specific chemical changes in the walls of mutant seedlings, and two of these changes, wall lignification and decreased methyl ester bonds, were verified by direct analyses. Taken together, the results are consistent with the hypothesis that APY1, APY2, and eATP play important roles in the signaling steps that link biotic stresses to plant defense responses and growth changes.
Collapse
|
50
|
Duprey A, Reverchon S, Nasser W. Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends Microbiol 2013; 22:92-9. [PMID: 24370464 DOI: 10.1016/j.tim.2013.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022]
Abstract
Pathogenic bacteria have to cope with adverse conditions, such as the host environment and host defense reactions. To adapt quickly to environmental changes, pathogens have developed complex regulatory networks that ensure adequate expression of their virulence genes. Recent evidence suggests that Fis, an abundant nucleoid-associated protein transiently produced during early exponential growth, plays a major role in these networks in several pathogenic bacteria. This review focuses on two enterobacteria, Salmonella enterica and Dickeya dadantii, that inhabit distinct ecological niches to illustrate how Fis uses different strategies to coordinate virulence gene expression, depending on the bacterial lifestyle.
Collapse
Affiliation(s)
- Alexandre Duprey
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - Sylvie Reverchon
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
| | - William Nasser
- Université Lyon 1, F-69622 Villeurbanne, France; INSA de Lyon, F-69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, Villeurbanne, France.
| |
Collapse
|