1
|
Li Q, Guo R, Li A, Wang Y. Roles of NADPH oxidases in regulating redox homeostasis and pathogenesis of the poplar canker fungus Cytospora chrysosperma. STRESS BIOLOGY 2025; 5:33. [PMID: 40338399 PMCID: PMC12061831 DOI: 10.1007/s44154-025-00223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 05/09/2025]
Abstract
Poplar canker, caused by the fungus Cytospora chrysosperma, results in tremendous losses in poplar plantations in China. Although NADPH oxidases (NOXs) play important roles in the development and pathogenicity of several pathogenic fungi, their roles in C. chrysosperma remain unclear. In this study, we characterized three NOX genes (CcNox1, CcNox2, and CcNoxR) in C. chrysosperma. All three genes were highly upregulated during poplar branch infection, and deletion of any of them severely reduced virulence on poplar branches. Furthermore, deletion of either CcNox1 or CcNoxR resulted in a significant increase in endogenous reactive oxygen species production in hyphae, enhanced influx of Ca2+, the disruption of redox homeostasis and compromised mitochondrial integrity. Moreover, biosynthesis and secretion of a known virulence factor oxalic acid was obviously defective and exogenous oxalic acid supplementation rescued the virulence of the mutants. Taken together, our findings reveal that NOXs play important roles in redox homeostasis, mitochondrial integrity and pathogenicity in C. chrysosperma.
Collapse
Affiliation(s)
- Quansheng Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Rongrong Guo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Aining Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| |
Collapse
|
2
|
Xiao Q, Zhang L, Xu X, Dai R, Tan Y, Li X, Jin D, Fan Y. Nitrogen-Metabolism Inhibitor NmrA Regulates Conidial Production, Melanin Synthesis, and Virulence in Phytopathogenic Fungus Verticillium dahliae. PHYTOPATHOLOGY 2025; 115:281-289. [PMID: 39688539 DOI: 10.1094/phyto-07-24-0226-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
NmrA homologs have been reported as conserved regulators of nitrogen metabolite repression in various fungi. Here, we identified an NmrA homolog in Verticillium dahliae and reported its functions in nitrogen utilization, growth and development, and pathogenesis. VdNmrA interacts with the V. dahliae AreA protein and regulates the expression of a typical NMR target, the formamidase gene. VdNmrA deletion mutants exhibited significantly slower colony growth on media with Gln or Arg. Furthermore, VdNmrA deletion impaired hyphal growth, spore production, hyperosmotic stress tolerance, and melanin biosynthesis. Fewer reactive oxygen species were produced in VdNmrA mutants, and the NADPH oxidase genes noxA and noxB showed lowered expression levels compared with the wild type. VdNmrA mutants exhibited reduced virulence on cotton and Arabidopsis compared with wild-type strains. Our results indicated that VdNmrA functioned as a nitrogen metabolite repression repressor and played important roles in nutrient utilization, fungal development, stress tolerance, and pathogenicity in V. dahliae.
Collapse
Affiliation(s)
- Qi Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Leyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xueping Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Renyu Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingqing Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Zhu S, Wang J, Liu Y, Jin D, Luo X, Wan M, Fan Y. Multifaceted roles of NADPH oxidases in the growth and pathogenicity of Beauveria bassiana. Virulence 2024; 15:2413850. [PMID: 39377461 PMCID: PMC11469448 DOI: 10.1080/21505594.2024.2413850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Reactive oxygen species (ROS), synthesized by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) complex, are vital molecules in biological cells, influencing various physiological processes such as fungal growth, development, and virulence. Beauveria bassiana, an entomopathogenic fungus, is a promising biopesticide for agricultural, forestry, and urban pest control. This study focuses on the characterization of NADPH oxidases (Noxs) in B. bassiana. Gene expression profiles of Noxs in B. bassiana (BbNoxs) were analysed using RT-qPCR. Knockout strains of single BbNoxA, BbNoxB, BbNoxR, and double BbNoxA and BbNoxB were constructed via homologous recombination, and their phenotypic characteristics were examined. Fungal virulence was evaluated using Galleria mellonella larvae, and infection structures formation and penetration ability were assessed on cicada wings. ROS production and actin assembly during fungal growth and infection were detected using staining and marker methods. Expression analysis revealed significant upregulation of BbNoxs during fungal growth and infection. Compared to the wild-type strain, single knockouts (ΔBbNoxA/B/R) and double knockout (ΔBbNoxAB) of BbNoxs exhibited reduced conidial yields, accelerated conidial germination rates. Deletion of BbNoxB or BbNoxR decreased fungal virulence compared to the WT strain in topical inoculation experiments. Additionally, loss of BbNoxB or BbNoxR impaired infection structures formation, penetration ability, ROS production, and actin aggregation during fungal infection. BbNoxs are crucial for fungal growth, development, and virulence in B. bassiana, playing essential roles in infection structures formation, penetration, ROS production, and actin assembly. Understanding their functions provides insights into B. bassiana's pathogenic mechanisms.
Collapse
Affiliation(s)
- Shengan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jing Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Liu
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xingyou Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Min Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Wang H, Guo Y, Luo Z, Gao L, Li R, Zhang Y, Kalaji HM, Qiang S, Chen S. Recent Advances in Alternaria Phytotoxins: A Review of Their Occurrence, Structure, Bioactivity and Biosynthesis. J Fungi (Basel) 2022; 8:jof8020168. [PMID: 35205922 PMCID: PMC8878860 DOI: 10.3390/jof8020168] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Alternaria is a ubiquitous fungal genus in many ecosystems, consisting of species and strains that can be saprophytic, endophytic, or pathogenic to plants or animals, including humans. Alternaria species can produce a variety of secondary metabolites (SMs), especially low molecular weight toxins. Based on the characteristics of host plant susceptibility or resistance to the toxin, Alternaria phytotoxins are classified into host-selective toxins (HSTs) and non-host-selective toxins (NHSTs). These Alternaria toxins exhibit a variety of biological activities such as phytotoxic, cytotoxic, and antimicrobial properties. Generally, HSTs are toxic to host plants and can cause severe economic losses. Some NHSTs such as alternariol, altenariol methyl-ether, and altertoxins also show high cytotoxic and mutagenic activities in the exposed human or other vertebrate species. Thus, Alternaria toxins are meaningful for drug and pesticide development. For example, AAL-toxin, maculosin, tentoxin, and tenuazonic acid have potential to be developed as bioherbicides due to their excellent herbicidal activity. Like altersolanol A, bostrycin, and brefeldin A, they exhibit anticancer activity, and ATX V shows high activity to inhibit the HIV-1 virus. This review focuses on the classification, chemical structure, occurrence, bioactivity, and biosynthesis of the major Alternaria phytotoxins, including 30 HSTs and 50 NHSTs discovered to date.
Collapse
Affiliation(s)
- He Wang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Yanjing Guo
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Zhi Luo
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Liwen Gao
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Rui Li
- Agricultural and Animal Husbandry Ecology and Resource Protection Center, Ordos Agriculture and Animal Husbandry Bureau, Ordos 017010, China;
| | - Yaxin Zhang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
| | - Shiguo Chen
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Y.G.); (Z.L.); (L.G.); (Y.Z.); (S.Q.)
- Correspondence: ; Tel.: +86-25-84395117
| |
Collapse
|
5
|
Copy number-dependent DNA methylation of the Pyricularia oryzae MAGGY retrotransposon is triggered by DNA damage. Commun Biol 2021; 4:351. [PMID: 33742058 PMCID: PMC7979813 DOI: 10.1038/s42003-021-01836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
Transposable elements are common targets for transcriptional and post-transcriptional gene silencing in eukaryotic genomes. However, the molecular mechanisms responsible for sensing such repeated sequences in the genome remain largely unknown. Here, we show that machinery of homologous recombination (HR) and RNA silencing play cooperative roles in copy number-dependent de novo DNA methylation of the retrotransposon MAGGY in the fungus Pyricularia oryzae. Genetic and physical interaction studies revealed that RecA domain-containing proteins, including P. oryzae homologs of Rad51, Rad55, and Rad57, together with an uncharacterized protein, Ddnm1, form complex(es) and mediate either the overall level or the copy number-dependence of de novo MAGGY DNA methylation, likely in conjunction with DNA repair. Interestingly, P. oryzae mutants of specific RNA silencing components (MoDCL1 and MoAGO2) were impaired in copy number-dependence of MAGGY methylation. Co-immunoprecipitation of MoAGO2 and HR components suggested a physical interaction between the HR and RNA silencing machinery in the process.
Collapse
|
6
|
Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Comput Struct Biotechnol J 2020; 18:3344-3349. [PMID: 33294130 PMCID: PMC7677654 DOI: 10.1016/j.csbj.2020.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) are small molecules with high oxidative activity, and are usually produced as byproducts of metabolic processes in organisms. ROS play an important role during the interaction between plant hosts and pathogenic fungi. Phytopathogenic fungi have evolved sophisticated ROS producing and scavenging systems to achieve redox homeostasis. Emerging evidences suggest that ROS derived from fungi are involved in various important aspects of the development and pathogenesis, including formation of conidia, sclerotia, conidial anastomosis tubes (CATs) and infectious structures. In this mini-review, we summarize the research progress on the redox homeostasis systems, the versatile functions of ROS in the development and pathogenesis of phytopathogenic fungi, and the regulation effects of exogenous factors on intercellular ROS and virulence of the fungal pathogens.
Collapse
|
7
|
Wang X, Che MZ, Khalil HB, McCallum BD, Bakkeren G, Rampitsch C, Saville BJ. The role of reactive oxygen species in the virulence of wheat leaf rust fungus Puccinia triticina. Environ Microbiol 2020; 22:2956-2967. [PMID: 32390310 PMCID: PMC7496513 DOI: 10.1111/1462-2920.15063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) play an important role during host–pathogen interactions and are often an indication of induced host defence responses. In this study, we demonstrate for the first time that Puccinia triticina (Pt) generates ROS, including superoxide, H2O2 and hydroxyl radicals, during wheat infection. Through pharmacological inhibition, we found that ROS are critical for both Pt urediniospore germination and pathogenic development on wheat. A comparative RNA‐Seq analysis of different stages of Pt infection process revealed 291 putative Pt genes associated with the oxidation–reduction process. Thirty‐seven of these genes encode known proteins. The expressions of five Pt genes, including PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod, were subsequently verified using RT‐qPCR analysis. The results show that the expressions of PtNoxA, PtNoxB, PtNoxR, PtCat and PtSod are up‐regulated during urediniospore germination. In comparison, the expressions of PtNoxA, PtNoxB, PtNoxR and PtCat are down‐regulated during wheat infection from 12 to 120 h after inoculation (HAI), whereas the expression of PtSod is up‐regulated with a peak of expression at 120 HAI. We conclude that ROS are critical for the full virulence of Pt and a coordinate down‐regulation of PtNox genes may be important for successful infection in wheat.
Collapse
Affiliation(s)
- Xiben Wang
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Mingzhe Z Che
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada.,Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuan Ming Yuan West Road, People's Republic of China
| | - Hala B Khalil
- Summerland Research & Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, V0H 1Z0, Canada.,Department of Genetics, Faculty of Agriculture, Ain Shams University, 68 Hadayek Shoubra, Postal code, Cairo, 11241, Egypt
| | - Brent D McCallum
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Guus Bakkeren
- Summerland Research & Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, V0H 1Z0, Canada
| | - Christof Rampitsch
- Morden Research & Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, Manitoba, R6M 1Y5, Canada
| | - Barry J Saville
- Forensic Science Program Trent University, Peterborough, Ontario, K9J 7B8, Canada
| |
Collapse
|
8
|
Nguyen Q, Iritani A, Ohkita S, Vu BV, Yokoya K, Matsubara A, Ikeda KI, Suzuki N, Nakayashiki H. A fungal Argonaute interferes with RNA interference. Nucleic Acids Res 2019; 46:2495-2508. [PMID: 29309640 PMCID: PMC5946944 DOI: 10.1093/nar/gkx1301] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
Small RNA (sRNA)-mediated gene silencing phenomena, exemplified by RNA interference (RNAi), require a unique class of proteins called Argonautes (AGOs). An AGO protein typically forms a protein–sRNA complex that contributes to gene silencing using the loaded sRNA as a specificity determinant. Here, we show that MoAGO2, one of the three AGO genes in the fungus Pyricularia oryzae (Magnaporthe oryzae) interferes with RNAi. Gene knockout (KO) studies revealed that MoAGO1 and MoAGO3 additively or redundantly played roles in hairpin RNA- and retrotransposon (MAGGY)-triggered RNAi while, surprisingly, the KO mutants of MoAGO2 (Δmoago2) showed elevated levels of gene silencing. Consistently, transcript levels of MAGGY and mycoviruses were drastically reduced in Δmoago2, supporting the idea that MoAGO2 impeded RNAi against the parasitic elements. Deep sequencing analysis revealed that repeat- and mycovirus-derived small interfering RNAs were mainly associated with MoAGO2 and MoAGO3, and their populations were very similar based on their size distribution patterns and positional base preference. Site-directed mutagenesis studies indicated that sRNA binding but not slicer activity of MoAGO2 was essential for the ability to diminish the efficacy of RNAi. Overall, these results suggest a possible interplay between distinct sRNA-mediated gene regulation pathways through a competition for sRNA.
Collapse
Affiliation(s)
- Quyet Nguyen
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Akihide Iritani
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Shuhei Ohkita
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Ba V Vu
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Kana Yokoya
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Ai Matsubara
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Ken-Ichi Ikeda
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Hitoshi Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe 657-8501, Japan
| |
Collapse
|
9
|
Chakdar H, Goswami SK, Singh E, Choudhary P, Yadav J, Kashyap PL, Srivastava AK, Saxena AK. noxB-based marker for Alternaria spp.: a new diagnostic marker for specific and early detection in crop plants. 3 Biotech 2019; 9:249. [PMID: 31218173 DOI: 10.1007/s13205-019-1779-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/26/2019] [Indexed: 10/26/2022] Open
Abstract
Alternaria species are a major plant pathogen and their precise detection and identification is crucial for effective management. In the present study, a polymerase chain reaction (PCR)-based diagnostic technique has been developed for detection of Alternaria species. Four primers were designed for four genes viz. noxB, AMK1, AKT3 and NIK1. In gradient PCR, only the primer sets for noxB gene showed specific amplicon of ~ 200 bp in all the isolates of Alternaria, while no amplification was observed in related fungal species such as Ulocladium botrytis, Ulocladium consortiale, Stemphylium vesicarium, Cochliobolus tuberculatus, Curvularia prasadii, and Bipolaris sorokiniana. The noxB primer set was used as diagnostic marker to discriminate and diagnose Alternaria species in nine different crop plants. Real-time assay revealed that the primer set was able to detect Alternaria noxB genes in leaves with no characteristic visible symptoms. Through real-time PCR, the noxB gene of Alternaria could be detected even in 0.5 ng of host DNA. This is the first report of noxB gene for molecular detection of Alternaria spp.
Collapse
|
10
|
Li S, Yu W, Guan X, Luo Z, Chen G, Liu W, Zhang J. Deletion of NADH oxidase in Listeria monocytogenes promotes the bacterial infection of brain. Free Radic Biol Med 2017; 112:608-615. [PMID: 28916475 DOI: 10.1016/j.freeradbiomed.2017.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022]
Abstract
NADH oxidase (NOX) plays important roles in respiration and reactive oxygen species (ROS) generation in cells. In this study, we explored the function of NOX in Listeria monocytogenes by gene deletion. From our results, nox mutant strain (∆nox) had lower H2O2 level and showed no significant alteration in bacteria growth activity. But it had enhanced invasiveness during the invasion of glial cells and mice brain compared to wildtype strain. Furthermore, several virulence genes involved in invasion, such as inlA, inlB, vip and sigB, were upregulated in ∆nox, and the alterations could be restored by complementation. To explore if nox was involved in the interaction of pathogen and host, we examined the generation of host ROS including superoxide and H2O2 during infection, and found ∆nox invasion leading to less superoxide and H2O2 generation. Besides, the upregulation of pro-inflammatory factors in glial cells was restrained when invaded by ∆nox compared to wildtype and complementary strain. In conclusion, our study evaluated the function of nox in L. monocytogenes and indicated that nox could regulate the invasion of L. monocytogenes by regulating virulence genes expression and the interaction of host-and- pathogens.
Collapse
Affiliation(s)
- Sen Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenwen Yu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Luo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guowei Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wukang Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingchen Zhang
- Certification and Review Center, Shanghai Municipal Food and Drug Administration, Shanghai 200020, China
| |
Collapse
|
11
|
Osato T, Park P, Ikeda K. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor. Fungal Biol 2017; 121:127-136. [DOI: 10.1016/j.funbio.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 11/27/2022]
|
12
|
Mangwanda R, Zwart L, van der Merwe NA, Moleleki LN, Berger DK, Myburg AA, Naidoo S. Localization and Transcriptional Responses of Chrysoporthe austroafricana in Eucalyptus grandis Identify Putative Pathogenicity Factors. Front Microbiol 2016; 7:1953. [PMID: 28008326 PMCID: PMC5143476 DOI: 10.3389/fmicb.2016.01953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Chrysoporthe austroafricana is a fungal pathogen that causes the development of stem cankers on susceptible Eucalyptus grandis trees. Clones of E. grandis that are partially resistant and highly susceptible have been identified based on the extent of lesion formation on the stem upon inoculation with C. austroafricana. These interactions have been used as a model pathosystem to enhance our understanding of interactions between pathogenic fungi and woody hosts, which may be different to herbaceous hosts. In previous research, transcriptomics of host responses in these two clones to C. austroafricana suggested roles for salicylic acid and gibberellic acid phytohormone signaling in defense. However, it is unclear how the pathogen infiltrates host tissue and which pathogenicity factors facilitate its spread in the two host genotypes. The aim of this study was to investigate these two aspects of the E. grandis-C. austroafricana interaction and to test the hypothesis that the pathogen possesses mechanisms to modulate the tree phytohormone-mediated defenses. Light microscopy showed that the pathogen occurred in most cell types and structures within infected E. grandis stem tissue. Notably, the fungus appeared to spread through the stem by penetrating cell wall pits. In order to understand the molecular interaction between these organisms and predict putative pathogenicity mechanisms of C. austroafricana, fungal gene expression was studied in vitro and in planta. Fungal genes associated with cell wall degradation, carbohydrate metabolism and phytohormone manipulation were expressed in planta by C. austroafricana. These genes could be involved in fungal spread by facilitating cell wall pit degradation and manipulating phytohormone mediated defense in each host environment, respectively. Specifically, the in planta expression of an ent-kaurene oxidase and salicylate hydroxylase in C. austroafricana suggests putative mechanisms by which the pathogen can modulate the phytohormone-mediated defenses of the host. These mechanisms have been reported in herbaceous plant-pathogen interactions, supporting the notion that these aspects of the interaction are similar in a woody species. This study highlights ent-kaurene oxidase and salicylate hydroxylase as candidates for further functional characterization.
Collapse
Affiliation(s)
- Ronishree Mangwanda
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
13
|
Patel TK, Williamson JD. Mannitol in Plants, Fungi, and Plant-Fungal Interactions. TRENDS IN PLANT SCIENCE 2016; 21:486-497. [PMID: 26850794 DOI: 10.1016/j.tplants.2016.01.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 05/18/2023]
Abstract
Although the presence of mannitol in organisms as diverse as plants and fungi clearly suggests that this compound has important roles, our understanding of fungal mannitol metabolism and its interaction with mannitol metabolism in plants is far from complete. Despite recent inroads into understanding the importance of mannitol and its metabolic roles in salt, osmotic, and oxidative stress tolerance in plants and fungi, our current understanding of exactly how mannitol protects against reactive oxygen is also still incomplete. In this opinion, we propose a new model of the interface between mannitol metabolism in plants and fungi and how it impacts plant-pathogen interactions.
Collapse
Affiliation(s)
- Takshay K Patel
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - John D Williamson
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Segal AW. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 2016; 6:160028. [PMID: 27249799 PMCID: PMC4892433 DOI: 10.1098/rsob.160028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion.
Collapse
Affiliation(s)
- Anthony W Segal
- Division of Medicine, UCL, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
15
|
Anderson JP, Hane JK, Stoll T, Pain N, Hastie ML, Kaur P, Hoogland C, Gorman JJ, Singh KB. Proteomic Analysis of Rhizoctonia solani Identifies Infection-specific, Redox Associated Proteins and Insight into Adaptation to Different Plant Hosts. Mol Cell Proteomics 2016; 15:1188-203. [PMID: 26811357 PMCID: PMC4824849 DOI: 10.1074/mcp.m115.054502] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 11/22/2022] Open
Abstract
Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility to R. solani when expressed in Nicotiana benthamiana. In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.
Collapse
Affiliation(s)
- Jonathan P Anderson
- From the ‡CSIRO Agriculture, Floreat, Western Australia; §The University of Western Australia Institute of Agriculture, Crawley, Western Australia
| | - James K Hane
- From the ‡CSIRO Agriculture, Floreat, Western Australia
| | - Thomas Stoll
- ¶QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Pain
- From the ‡CSIRO Agriculture, Floreat, Western Australia
| | - Marcus L Hastie
- ¶QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | | - Jeffrey J Gorman
- ¶QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Karam B Singh
- From the ‡CSIRO Agriculture, Floreat, Western Australia; §The University of Western Australia Institute of Agriculture, Crawley, Western Australia;
| |
Collapse
|
16
|
Pham KTM, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda KI, Nakayashiki H. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLoS Genet 2015; 11:e1005385. [PMID: 26230995 PMCID: PMC4521839 DOI: 10.1371/journal.pgen.1005385] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up- and down-regulated, respectively, in a Moset1-dependent manner. 5) The Moset1-dependent DEGs were enriched in several gene categories such as signal transduction, transport, RNA processing, and translation. This paper provides two major contributions to the field of genetics. First, we systematically studied the biological roles of eight histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. We investigated their roles, especially focusing on their involvement in infection-related morphogenesis and pathogenicity. The results showed that the eight KMTs were involved in various infection processes to varying degrees, and that MoSET1, one of the KMTs catalyzing methylation at histone H3 lysine 4 (H3K4), had the largest impact on the pathogenicity of the fungus. Second, we focused on the role of MoSET1 in global gene regulation. H3K4 methylation is generally believed to be an epigenetic mark for gene activation in higher eukaryotes. However, in Saccharomyces cerevisiae, SET1 was originally characterized as being required for transcriptional silencing of silent mating-type loci. We addressed this apparent discrepancy by examining genome-wide gene expression and H3K4 methylation during infection-related morphogenesis in M. oryzae. RNA-seq analysis of a MoSET1 deletion mutant revealed that MoSET1 was indeed required for proper gene activation and repression. ChIP-seq analyses of H3K4 methylation and MoSET1 suggested that MoSET1 could directly play a role in gene activation while MoSET1-dependent gene repression may be caused by indirect effects.
Collapse
Affiliation(s)
- Kieu Thi Minh Pham
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Yoshihiro Inoue
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ba Van Vu
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hanh Hieu Nguyen
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Toru Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ken-ichi Ikeda
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hitoshi Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
- * E-mail:
| |
Collapse
|
17
|
Teichert I, Nowrousian M, Pöggeler S, Kück U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. ADVANCES IN GENETICS 2014; 87:199-244. [PMID: 25311923 DOI: 10.1016/b978-0-12-800149-3.00004-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are excellent experimental systems due to their short life cycles as well as easy and safe manipulation in the laboratory. They form three-dimensional structures with numerous different cell types and have a long tradition as genetic model organisms used to unravel basic mechanisms underlying eukaryotic cell differentiation. The filamentous ascomycete Sordaria macrospora is a model system for sexual fruiting body (perithecia) formation. S. macrospora is homothallic, i.e., self-fertile, easily genetically tractable, and well suited for large-scale genomics, transcriptomics, and proteomics studies. Specific features of its life cycle and the availability of a developmental mutant library make it an excellent system for studying cellular differentiation at the molecular level. In this review, we focus on recent developments in identifying gene and protein regulatory networks governing perithecia formation. A number of tools have been developed to genetically analyze developmental mutants and dissect transcriptional profiles at different developmental stages. Protein interaction studies allowed us to identify a highly conserved eukaryotic multisubunit protein complex, the striatin-interacting phosphatase and kinase complex and its role in sexual development. We have further identified a number of proteins involved in chromatin remodeling and transcriptional regulation of fruiting body development. Furthermore, we review the involvement of metabolic processes from both primary and secondary metabolism, and the role of nutrient recycling by autophagy in perithecia formation. Our research has uncovered numerous players regulating multicellular development in S. macrospora. Future research will focus on mechanistically understanding how these players are orchestrated in this fungal model system.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Stefanie Pöggeler
- Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Göttingen, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
18
|
Substrate-induced transcriptional activation of the MoCel7C cellulase gene is associated with methylation of histone H3 at lysine 4 in the rice blast fungus Magnaporthe oryzae. Appl Environ Microbiol 2013; 79:6823-32. [PMID: 23995923 DOI: 10.1128/aem.02082-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms involved in substrate-dependent regulation of a Magnaporthe oryzae gene encoding a cellulase which we designate MoCel7C (MGG_14954) were investigated. The levels of MoCel7C transcript were dramatically increased more than 1,000-fold, 16 to 24 h after transfer to a medium containing 2% carboxymethylcellulose (CMC), while levels were very low or undetectable in conventional rich medium. Green fluorescent protein reporter assays showed that the MoCel7C promoter was activated by cello-oligosaccharides larger than a pentamer. CMC-induced activation of the MoCel7C promoter was suppressed by glucose and cellobiose. Chromatin immunoprecipitation assays revealed that histone H3 methylation on lysine 4 (H3K4) at the MoCel7C locus was associated with activation of the gene by CMC. Consistently, CMC-induced MoCel7C gene activation was drastically diminished in a knockout (KO) mutant of the MoSET1 gene, which encodes a histone lysine methyltransferase that catalyzes H3K4 methylation in M. oryzae. Interestingly, however, MoCel7C transcript levels under noninducing conditions were significantly increased in the MoSET1 KO mutant, suggesting that MoSET1 directly or indirectly plays a role in both activation and suppression of the MoCel7C gene in response to environmental signals. In addition, gene expression and silencing vectors using the MoCel7C promoter were constructed.
Collapse
|