1
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
2
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
3
|
Mahillon M, Decroës A, Peduzzi C, Romay G, Legrève A, Bragard C. RNA silencing machinery contributes to inability of BSBV to establish infection in Nicotiana benthamiana: evidence from characterization of agroinfectious clones of Beet soil-borne virus. J Gen Virol 2021; 102. [PMID: 33215984 DOI: 10.1099/jgv.0.001530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Beet soil-borne virus (BSBV) is a sugar beet pomovirus frequently associated with Beet necrotic yellow veins virus, the causal agent of the rhizomania disease. BSBV has been detected in most of the major beet-growing regions worldwide, yet its impact on this crop remains unclear. With the aim to understand the life cycle of this virus and clarify its putative pathogenicity, agroinfectious clones have been engineered for each segment of its tripartite genome. The biological properties of these clones were then studied on different plant species. Local infection was obtained on agroinfiltrated leaves of Beta macrocarpa. On leaves of Nicotiana benthamiana, similar results were obtained, but only when heterologous viral suppressors of RNA silencing were co-expressed or in a transgenic line down regulated for both dicer-like protein 2 and 4. On sugar beet, local infection following agroinoculation was obtained on cotyledons, but not on other tested plant parts. Nevertheless, leaf symptoms were observed on this host via sap inoculation. Likewise, roots were efficiently mechanically infected, highlighting low frequency of root necrosis and constriction, and enabling the demonstration of transmission by the vector Polymyxa betae. Altogether, the entire viral cycle was reproduced, validating the constructed agroclones as efficient inoculation tools, paving the way for further studies on BSBV and its related pathosystem.
Collapse
Affiliation(s)
- Mathieu Mahillon
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Alain Decroës
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Chloé Peduzzi
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Gustavo Romay
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Anne Legrève
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Claude Bragard
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
RNAseq Analysis of Rhizomania-Infected Sugar Beet Provides the First Genome Sequence of Beet Necrotic Yellow Vein Virus from the USA and Identifies a Novel Alphanecrovirus and Putative Satellite Viruses. Viruses 2020; 12:v12060626. [PMID: 32531939 PMCID: PMC7354460 DOI: 10.3390/v12060626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
“Rhizomania” of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.
Collapse
|
5
|
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a Reverse Genetic System for Beet Necrotic Yellow Vein Virus to Study Rz1 Resistance Response in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2020; 10:1703. [PMID: 32010172 PMCID: PMC6978805 DOI: 10.3389/fpls.2019.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Edgar Maiss
- Plant Virology, Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
6
|
Jiang N, Zhang C, Liu J, Guo Z, Zhang Z, Han C, Wang Y. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1302-1315. [PMID: 30565826 PMCID: PMC6576094 DOI: 10.1111/pbi.13055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chao Zhang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun‐Ying Liu
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of Chemistry Biology and EnvironmentYuxi Normal UniversityYuxiChina
| | - Zhi‐Hong Guo
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zong‐Ying Zhang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Cheng‐Gui Han
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ying Wang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
8
|
Flobinus A, Chevigny N, Charley PA, Seissler T, Klein E, Bleykasten-Grosshans C, Ratti C, Bouzoubaa S, Wilusz J, Gilmer D. Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5'→3' Xrn Exoribonuclease Activity. Viruses 2018; 10:v10030137. [PMID: 29562720 PMCID: PMC5869530 DOI: 10.3390/v10030137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 12/27/2022] Open
Abstract
The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the 'core' nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this 'core' sequence resides a conserved "coremin" motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing "coremin" at its 5' end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S.cerevisiae ribonuclease mutants identified the 5'-to-3' exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 'core' sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.
Collapse
Affiliation(s)
- Alyssa Flobinus
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Nicolas Chevigny
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Phillida A Charley
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-168, USA.
| | - Tanja Seissler
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Elodie Klein
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
- SESVanderHave, B3300 Tienen, Belgium.
| | | | - Claudio Ratti
- DipSA-Plant Pathology, University of Bologna, 40127 Bologna, Italy.
| | - Salah Bouzoubaa
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-168, USA.
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
9
|
Laufer M, Mohammad H, Maiss E, Richert-Pöggeler K, Dall'Ara M, Ratti C, Gilmer D, Liebe S, Varrelmann M. Biological properties of Beet soil-borne mosaic virus and Beet necrotic yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for reassortant appearance. Virology 2018; 518:25-33. [PMID: 29453056 DOI: 10.1016/j.virol.2018.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants.
Collapse
Affiliation(s)
- Marlene Laufer
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Hamza Mohammad
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Katja Richert-Pöggeler
- Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Mattia Dall'Ara
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy; Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy.
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France.
| | - Sebastian Liebe
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany.
| |
Collapse
|
10
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
11
|
On the interaction and localization of the beet necrotic yellow vein virus replicase. Virus Res 2014; 196:94-104. [PMID: 25445349 DOI: 10.1016/j.virusres.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is a multipartite positive-strand RNA virus. BNYVV RNA-1 encodes a non-structural p237 polyprotein processed in two proteins (p150 and p66) by a cis-acting protease activity. BNYVV non-structural proteins are closely related to replication proteins of positive strand RNA viruses such as hepeviruses rather to other plant virus replicases. The p237 and dsRNA have been localized by TEM in ER structures of infected leaf cells whereas dsRNA was immunolabeled in infected protoplasts. The p150 contains domains with methyltransferase, protease, helicase and two domains of unknown function whereas p66 encompasses the RNA-dependent RNA-polymerase signature. We report the existing interactions between functional domains of the p150 and p66 proteins and the addressing of the benyvirus replicase to the endoplasmic reticulum. Yeast two-hybrid approach, colocalization with FRET-FLIM analyses and co-immunoprecipitation highlighted existing interactions that suggest the presence of a multimeric complex at the vicinity of the cellular membranous web.
Collapse
|
12
|
Kochetov AV. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs. Bioessays 2014; 36:1204-12. [DOI: 10.1002/bies.201400111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alex V. Kochetov
- Institute of Cytology & Genetics, SB RAS; Novosibirsk Russia
- Novosibirsk State University; Novosibirsk Russia
| |
Collapse
|