1
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
2
|
Ogrodowicz P, Kuczyńska A, Mikołajczak K, Adamski T, Surma M, Krajewski P, Ćwiek-Kupczyńska H, Kempa M, Rokicki M, Jasińska D. Mapping of quantitative trait loci for traits linked to fusarium head blight in barley. PLoS One 2020; 15:e0222375. [PMID: 32017768 PMCID: PMC6999892 DOI: 10.1371/journal.pone.0222375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease occurring in small grain cereals worldwide. The disease results in the reduction of grain yield, and mycotoxins accumulated in grain are also harmful to both humans and animals. It has been reported that response to pathogen infection may be associated with the morphological and developmental traits of the host plant, e.g. earliness and plant height. Despite many studies, effective markers for selection of barley genotypes with increased resistance to FHB have not been developed. In the present study, we investigated 100 recombinant inbred lines (RIL) of spring barley. Plants were examined in field conditions (three locations) in a completely randomized design with three replications. Barley genotypes were artificially infected with spores of Fusarium culmorum before heading. Apart from the main phenotypic traits (plant height, spike characteristic, grain yield), infected kernels were visually scored and the content of deoxynivalenol (DON) mycotoxin was investigated. A set of 70 Quantitative Trait Loci (QTLs) were detected through phenotyping of the mapping population in field conditions and genotyping using a barley Ilumina 9K iSelect platform. Six loci were detected for the FHB index on chromosomes 2H, 3H, 5H, and 7H. A region on the short arm of chromosome 2H was detected in which many QTLs associated with FHB- and yield-related traits were found. This study confirms that agromorphological traits are tightly related to FHB and should be taken into consideration when breeding barley plants for FHB resistance.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Tadeusz Adamski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Maria Surma
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Michał Kempa
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Michał Rokicki
- Poznan Plant Breeding Station, Kasztanowa, Tulce, Poland
| | | |
Collapse
|
3
|
Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A, Funnell K, Wiedow C, Knaebel M, Hedderley D, Vanneste J, McCallum J, Hoeata K, Nath A, Chagné D, Gea L, Gardiner SE. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis). HORTICULTURE RESEARCH 2019; 6:101. [PMID: 31645956 PMCID: PMC6804790 DOI: 10.1038/s41438-019-0184-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Kerry Templeton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | | | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Andrew Wotton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Keith Funnell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Amardeep Nath
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| |
Collapse
|
4
|
Fernandes LDS, Royaert S, Corrêa FM, Mustiga GM, Marelli JP, Corrêa RX, Motamayor JC. Mapping of a Major QTL for Ceratocystis Wilt Disease in an F1 Population of Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:155. [PMID: 29491879 PMCID: PMC5817064 DOI: 10.3389/fpls.2018.00155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/29/2018] [Indexed: 05/31/2023]
Abstract
Cacao is an important crop, its beans are key raw materials for the chocolate and cosmetic industries. Ceratocystis wilt of cacao (CWC) caused by Ceratocystis cacaofunesta is a lethal disease for the crop. Therefore, the selection of resistant cacao varieties is one of the viable ways to minimize losses in cacao production. In this paper, we described the identification of a major QTL associated with CWC in an F1 mapping population from a cross between a resistant, "TSH 1188," and a susceptible genotype, "CCN 51." A set of 266 trees were genotyped using 3,526 single nucleotide polymorphic markers and then multiple QTL mapping analyses were performed. Two QTLs were identified on chromosomes IV and VI. The major QTL was located at 20 cM from the top position of chromosome VI, accounting for more than 60% of the phenotypic variation. The favorable allele T1, with haplotype GTT, came from the "TSH 1188" parent. It was evident that the haplotype combination T1C2 on chromosome VI was the most significant for resistance, since 93% of resistant trees had this haplotype. The major QTL converged to a genomic region of 739.4 kb that harbored nine candidate genes, including two major classes of resistance genes, which would make them the primary candidates involved in the resistance to CWC. The haplotypes detected are now used to improve the efficiency and precision of the selection of resistant trees in cacao breeding.
Collapse
Affiliation(s)
| | - Stefan Royaert
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fábio M. Corrêa
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | | | - Ronan X. Corrêa
- Statistics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | |
Collapse
|
5
|
González AM, Godoy L, Santalla M. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar. Int J Mol Sci 2017; 18:E2503. [PMID: 29168746 PMCID: PMC5751106 DOI: 10.3390/ijms18122503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Luís Godoy
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Marta Santalla
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
6
|
Bhadauria V, Ramsay L, Bett KE, Banniza S. QTL mapping reveals genetic determinants of fungal disease resistance in the wild lentil species Lens ervoides. Sci Rep 2017; 7:3231. [PMID: 28607439 PMCID: PMC5468239 DOI: 10.1038/s41598-017-03463-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 11/08/2022] Open
Abstract
Lens ervoides, a wild relative of lentil is an important source of allelic diversity for enhancing the genetic resistance of the cultivated species against economically important fungal diseases, such as anthracnose and Stemphylium blight caused by Colletotrichum lentis and Stemphylium botryosum, respectively. To unravel the genetic control underlying resistance to these fungal diseases, a recombinant inbred line (RIL) population (n = 94, F9) originating from a cross between two L. ervoides accessions, L01-827A and IG 72815, was genotyped on the Illumina HiSeq 2500 platform. A total of 289.07 million 100 bp paired-end reads were generated, giving an average 7.53-fold genomic coverage to the RILs and identifying 2,180 high-quality SNPs that assembled in 543 unique haplotypes. Seven linkage groups were resolved among haplotypes, equal to the haploid chromosome number in L. ervoides. The genetic map spanned a cumulative distance of 740.94 cM. Composite interval mapping revealed five QTLs with a significant association with resistance to C. lentis race 0, six QTLs for C. lentis race 1 resistance, and three QTLs for S. botryosum resistance. Taken together, the data obtained in the study reveal that the expression of resistance to fungal diseases in L. ervoides is a result of rearrangement of resistant alleles contributed by both parental accessions.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Larissa Ramsay
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Kirstin E Bett
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Sabine Banniza
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
7
|
Luo Q, Liu WW, Pan KD, Peng YL, Fan J. Genetic Interaction between Arabidopsis Qpm3.1 Locus and Bacterial Effector Gene hopW1-1 Underlies Natural Variation in Quantitative Disease Resistance to Pseudomonas Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:695. [PMID: 28523008 PMCID: PMC5415610 DOI: 10.3389/fpls.2017.00695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 05/10/2023]
Abstract
Wide quantitative variation in plant disease resistance across Arabidopsis wild populations has been documented and the underlying mechanisms remain largely unknown. To investigate the genetic and molecular basis of this variation, Arabidopsis recombinant inbred lines (RILs) derived from Aa-0 × Col-0 and Gie-0 × Col-0 crosses were constructed and used for inoculation with Pseudomonas syringae pathovars maculicola ES4326 (ES4326) and tomato DC3000 (DC3000). Bacterial growth assays revealed continuous distribution across the large differences between the most and the least susceptible lines in the RILs. Quantitative trait locus (QTL) mapping analyses identified a number of QTLs underpinning the variance in disease resistance, among which Qpm3.1, a major QTL on chromosome III from both Aa-0 and Gie-0 accessions, preferentially restricted the growth of ES4326. A genetic screen for the ES4326 gene selectively leading to bacterial growth inhibition on accession Aa-0 uncovered the effector gene hopW1-1. Further QTL analysis of disease in RILs inoculated with DC3000 carrying hopW1-1 showed that the genetic interaction between Qpm3.1 and hopW1-1 determined Arabidopsis resistance to bacterial infection. These findings illustrate the complexity of Arabidopsis-Pseudomonas interaction and highlight the importance of pathogen effectors in delineating genetic architectures of quantitative variation in plant disease resistance.
Collapse
Affiliation(s)
- Qi Luo
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Wei-Wei Liu
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - Ke-Di Pan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Jun Fan
- Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural UniversityBeijing, China
- *Correspondence: Jun Fan,
| |
Collapse
|
8
|
Talukder ZI, Seiler GJ, Song Q, Ma G, Qi L. SNP Discovery and QTL Mapping of Sclerotinia Basal Stalk Rot Resistance in Sunflower using Genotyping-by-Sequencing. THE PLANT GENOME 2016; 9. [PMID: 27902793 DOI: 10.3835/plantgenome2016.03.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Basal stalk rot (BSR), caused by the ascomycete fungus (Lib.) de Bary, is a serious disease of sunflower ( L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbred line (RIL) population derived from the cross HA 441 × RHA 439. A genotyping-by-sequencing (GBS) approach was adapted to discover single nucleotide polymorphism (SNP) markers. A genetic linkage map was developed comprised of 1053 SNP markers on 17 linkage groups (LGs) spanning 1401.36 cM. The RILs were tested in five environments (locations and years) for resistance to BSR. Quantitative trait loci were identified in each environment separately and also with integrated data across environments. A total of six QTL were identified in all five environments: one of each on LGs 4, 9, 10, 11, 16, and 17. The most significant QTL, and , were identified at multiple environments on LGs 10 and 17, explaining 31.6 and 20.2% of the observed phenotypic variance, respectively. The remaining four QTL, , , , and , were detected in only one environment on LGs 4, 9, 11, and 16, respectively. Each of these QTL explains between 6.4 and 10.5% of the observed phenotypic variation in the RIL population. Alleles conferring increased resistance were contributed by both parents. The potential of the and in marker-assisted selection (MAS) breeding are discussed.
Collapse
|