1
|
Sayiprathap BR, Patibanda AK, Mantesh M, Hiremath S, Sagar N, Reddy CNL, Jahir Basha CR, Diwakar Reddy SE, Kasi Rao M, Nair RM, Sudini HK. Sterility Mosaic Disease of Pigeonpea ( Cajanus cajan (L.) Huth): Current Status, Disease Management Strategies, and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:2146. [PMID: 39124264 PMCID: PMC11313807 DOI: 10.3390/plants13152146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Pigeonpea (Cajanus cajan) is one of the important grain legume crops cultivated in the semi-arid tropics, playing a crucial role in the economic well-being of subsistence farmers. India is the major producer of pigeonpea, accounting for over 75% of the world's production. Sterility mosaic disease (SMD), caused by Pigeonpea sterility mosaic virus (PPSMV) and transmitted by the eriophyid mite (Aceria cajani), is a major constraint to pigeonpea cultivation in the Indian subcontinent, leading to potential yield losses of up to 100%. The recent characterization of another Emaravirus associated with SMD has further complicated the etiology of this challenging viral disease. This review focuses on critical areas, including the current status of the disease, transmission and host-range, rapid phenotyping techniques, as well as available disease management strategies. The review concludes with insights into the future prospects, offering an overview and direction for further research and management strategies.
Collapse
Affiliation(s)
- B. R. Sayiprathap
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad 502324, Telangana, India
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, Telangana, India;
| | - A. K. Patibanda
- Department of Plant Pathology, Acharya NG Ranga Agricultural University, Lam, Guntur 522034, Andhra Pradesh, India;
| | - Muttappagol Mantesh
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, Gandhi Krishi Vigynan Kendra (GKVK), Bengaluru 560065, Karnataka, India (C.N.L.R.); (C.R.J.B.)
| | - Shridhar Hiremath
- CSIR—North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - N. Sagar
- Department of Plant Pathology, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
| | - C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, Gandhi Krishi Vigynan Kendra (GKVK), Bengaluru 560065, Karnataka, India (C.N.L.R.); (C.R.J.B.)
| | - C. R. Jahir Basha
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, Gandhi Krishi Vigynan Kendra (GKVK), Bengaluru 560065, Karnataka, India (C.N.L.R.); (C.R.J.B.)
| | - S. E. Diwakar Reddy
- Department of Plant Pathology, University of Agricultural Sciences, Dharwad 580005, Karnataka, India
| | - M. Kasi Rao
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad 502324, Telangana, India
- School of Agriculture, Mohan Babu University, Tirupati 517102, Andhra Pradesh, India
| | - R. M. Nair
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, Telangana, India;
| | - H. K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad 502324, Telangana, India
| |
Collapse
|
2
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Olmedo-Velarde A, Ochoa-Corona FM, Larrea-Sarmiento AE, Elbeaino T, Flores F. In-silico prediction of RT-qPCR-high resolution melting for broad detection of emaraviruses. PLoS One 2023; 18:e0272980. [PMID: 37155676 PMCID: PMC10166557 DOI: 10.1371/journal.pone.0272980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/30/2022] [Indexed: 05/10/2023] Open
Abstract
Twenty-four species of RNA viruses contain members infecting economically important crops that are classified within the genus Emaravirus, family Fimoviridae. There are at least two other non-classified species that may be added. Some of these viruses are spreading rapidly and cause economically important diseases on several crops, raising a need for a sensitive diagnostic technique for taxonomic and quarantine purposes. High-resolution melting (HRM) has shown to be reliable for the detection, discrimination, and diagnosis of several diseases of plants, animals, and humans. This research aimed to explore the ability to predict HRM outputs coupled to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To approach this goal a pair of degenerate genus-specific primers were designed for endpoint RT-PCR and RT-qPCR-HRM and the species in the genus Emaravirus were selected to framework the development of the assays. Both nucleic acid amplification methods were able to detect in-vitro several members of seven Emaravirus species with sensitivity up to one fg of cDNA. Specific parameters for in-silico prediction of the melting temperatures of each expected emaravirus amplicon are compared to the data obtained in-vitro. A very distinct isolate of the High Plains wheat mosaic virus was also detected. The high-resolution DNA melting curves of the RT-PCR products predicted in-silico using uMeltSM allowed saving time while designing and developing the RT-qPCR-HRM assay since the approach avoided extensive searching for optimal HRM assay regions and rounds of HRM tests in-vitro for optimization. The resultant assay provides sensitive detection and reliable diagnosis for potentially any emaravirus, including new species or strains.
Collapse
Affiliation(s)
- Alejandro Olmedo-Velarde
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States of America
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
| | - Francisco M Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States of America
| | - Adriana E Larrea-Sarmiento
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States of America
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Valenzano, BA, Italy
| | - Francisco Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
| |
Collapse
|
4
|
Sayiprathap BR, Patibanda AK, Prasanna Kumari V, Jayalalitha K, Ramappa HK, Rajeswari E, Karthiba L, Saratbabu K, Sharma M, Sudini HK. Salient Findings on Host Range, Resistance Screening, and Molecular Studies on Sterility Mosaic Disease of Pigeonpea Induced by Pigeonpea sterility mosaic viruses ( PPSMV-I and PPSMV-II). Front Microbiol 2022; 13:838047. [PMID: 35432270 PMCID: PMC9012581 DOI: 10.3389/fmicb.2022.838047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Two distinct emaraviruses, Pigeonpea sterility mosaic virus-I (PPSMV-I) and Pigeonpea sterility mosaic virus-II (PPSMV-II) were found to be associated with sterility mosaic disease (SMD) of pigeonpea [Cajanus cajan (L.) Millsp.]. The host range of both these viruses and their vector are narrow, confined to Nicotiana benthamiana identified through mechanical transmission, and to Phaseolus vulgaris cvs. Top Crop, Kintoki, and Bountiful (F: Fabaceae) through mite transmission. A weed host Chrozophora rottleri (F: Euphorbiaceae) was also infected and tested positive for both the viruses in RT-PCR. Among the wild Cajanus species tested, Cajanus platycarpus accessions 15661, 15668, and 15671, and Cajanus scarabaeoides accessions 15683, 15686, and 15922 were infected by both the viruses and mite vector suggesting possible sources of SMD inoculum. Though accession 15666 of C. platycarpus, 15696 of C. scarabaeoides, and 15639 of Cajanus lanceolatus were infected by both the viruses, no mite infestation was observed on them. Phylogenetic analysis of nucleotide sequences of RNA-1 and RNA-2 of PPSMV-I and PPSMV-II isolates in southern India revealed significant divergence especially PPSMV-II, which is closely related to the Fig mosaic virus (FMV) than PPSMV-I. In multilocation testing of pigeonpea genotypes for their broad-based resistance to SMD for two consecutive years, genotypes ICPL-16086 and ICPL-16087 showed resistance reaction (<10% incidence) in all three locations studied. Overall, the present study gives a clear idea about the host range of PPSMV-I and PPSMV-II, their molecular relationship, and sources of resistance. This information is critical for the development of reliable diagnostic tools and improved disease management strategies.
Collapse
Affiliation(s)
- B. R. Sayiprathap
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Department of Plant Pathology, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - A. K. Patibanda
- Department of Plant Pathology, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - V. Prasanna Kumari
- Department of Plant Pathology, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - K. Jayalalitha
- Department of Crop Physiology, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - H. K. Ramappa
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - E. Rajeswari
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - L. Karthiba
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - K. Saratbabu
- Department of Plant Pathology, Acharya N. G. Ranga Agricultural University, Guntur, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - H. K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
5
|
Sharma SK, Gupta OP, Pathaw N, Sharma D, Maibam A, Sharma P, Sanasam J, Karkute SG, Kumar S, Bhattacharjee B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front Nutr 2022; 8:751512. [PMID: 34977113 PMCID: PMC8716883 DOI: 10.3389/fnut.2021.751512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
Plant viruses pose a serious threat to agricultural production systems worldwide. The world's population is expected to reach the 10-billion mark by 2057. Under the scenario of declining cultivable land and challenges posed by rapidly emerging and re-emerging plant pathogens, conventional strategies could not accomplish the target of keeping pace with increasing global food demand. Gene-editing techniques have recently come up as promising options to enable precise changes in genomes with greater efficiency to achieve the target of higher crop productivity. Of genome engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins have gained much popularity, owing to their simplicity, reproducibility, and applicability in a wide range of species. Also, the application of different Cas proteins, such as Cas12a, Cas13a, and Cas9 nucleases, has enabled the development of more robust strategies for the engineering of antiviral mechanisms in many plant species. Recent studies have revealed the use of various CRISPR-Cas systems to either directly target a viral gene or modify a host genome to develop viral resistance in plants. This review provides a comprehensive record of the use of the CRISPR-Cas system in the development of antiviral resistance in plants and discusses its applications in the overall enhancement of productivity and nutritional landscape of cultivated plant species. Furthermore, the utility of this technique for the detection of various plant viruses could enable affordable and precise in-field or on-site detection. The futuristic potential of CRISPR-Cas technologies and possible challenges with their use and application are highlighted. Finally, the future of CRISPR-Cas in sustainable management of viral diseases, and its practical utility and regulatory guidelines in different parts of the globe are discussed systematically.
Collapse
Affiliation(s)
| | - Om Prakash Gupta
- Division of Quality & Basic Science, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Albert Maibam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Parul Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jyotsana Sanasam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sandeep Kumar
- Department of Plant Pathology, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | | |
Collapse
|
6
|
Olmedo-Velarde A, Ochoa-Corona FM, Larrea-Sarmiento AE, Elbeaino T, Flores F. Exploring in-silico prediction for the development of a RT-qPCR-high resolution melting assay for the broad detection of emaraviruses. J Virol Methods 2021:114425. [PMID: 34902460 DOI: 10.1016/j.jviromet.2021.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/09/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
High-resolution melting (HRM) has shown to be reliable for the detection, discrimination, and diagnosis of several diseases of plants, animals, and humans. The aim of this research was to explore the ability to predict HRM outputs when coupled to reverse transcription quantitative polymerase chain reaction (RT-qPCR). This research used the species in the Emaravirus genus as model to framework the development of genus-specific RT-qPCR-HRM assays. A pair of degenerate genus-specific primers were designed for use in endpoint RT-PCR and RT-qPCR-HRM detection of emaraviruses. Eleven species of RNA viruses infecting economically important crops are classified within the genus Emaravirus, family Fimoviridae. There are at least fifteen other non-classified species that may be added. Some of these viruses are spreading rapidly and cause economically important diseases on several crops, raising a need for a sensitive diagnostic technique for taxonomic and quarantine purposes. RT-PCR and RT-qPCR-HRM were able to detect seven emaravirus species in-vitro with sensitivity up to one fg of cDNA. Specific parameters for prediction in-silico of the melting temperatures of each expected emaravirus amplicon are provided and compared to the data obtained in-vitro. A very distinct isolate of the High Plains wheat mosaic virus was also detected. The prediction in-silico of fluorescence of high-resolution DNA melting curves of predicted RT-PCR products using uMeltSM speeded the design and development of RT-qPCR-HRM assay. This approach avoided rounds of HRM tests in-vitro when searching for the optimal regions that provides accurate diagnosis. The resultant assay provided sensitive detection and reliable diagnosis for potentially any emaravirus, including new species or strains.
Collapse
Affiliation(s)
- Alejandro Olmedo-Velarde
- Oklahoma State University, Institute for Biosecurity and Microbial Forensics, Stillwater, OK, USA; Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK, USA; Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Vida y de la Agricultura, Sangolqui, Ecuador
| | - Francisco M Ochoa-Corona
- Oklahoma State University, Institute for Biosecurity and Microbial Forensics, Stillwater, OK, USA; Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK, USA.
| | - Adriana E Larrea-Sarmiento
- Oklahoma State University, Institute for Biosecurity and Microbial Forensics, Stillwater, OK, USA; Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK, USA
| | - Toufic Elbeaino
- Istituto Agronomico Mediterraneo di Bari, Valenzano, BA, Italy
| | - Francisco Flores
- Universidad de las Fuerzas Armadas ESPE, Departamento de Ciencias de la Vida y de la Agricultura, Sangolqui, Ecuador; Universidad UTE, Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Quito, Ecuador
| |
Collapse
|
7
|
Tatineni S, Hein GL. High Plains wheat mosaic virus: An enigmatic disease of wheat and corn causing the High Plains disease. MOLECULAR PLANT PATHOLOGY 2021; 22:1167-1179. [PMID: 34375024 PMCID: PMC8435230 DOI: 10.1111/mpp.13113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
BRIEF HISTORY In 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease. TAXONOMY High Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae. VIRION The genomic RNAs are encapsidated in thread-like nucleocapsids in double-membrane 80-200 nm spherical or ovoid virions. GENOME CHARACTERIZATION The HPWMoV genome consists of eight single-stranded negative-sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981-nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA-dependent RNA polymerase. RNA 2 is 2,211-nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439- and 1,441-nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682-nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715- and 1,752-nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434- and 1,339-nt long, code for 305 and 176 amino acid proteins, respectively. BIOLOGICAL PROPERTIES HPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed. DISEASE MANAGEMENT Genetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- USDA‐ARS and Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Gary L. Hein
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
8
|
Mwaipopo B, Rajamäki ML, Ngowi N, Nchimbi-Msolla S, Njau PJR, Valkonen JPT, Mbanzibwa DR. Next-Generation Sequencing-Based Detection of Common Bean Viruses in Wild Plants from Tanzania and Their Mechanical Transmission to Common Bean Plants. PLANT DISEASE 2021; 105:2541-2550. [PMID: 33449805 DOI: 10.1094/pdis-07-20-1420-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viral diseases are a major threat for common bean production. According to recent surveys, >15 different viruses belonging to 11 genera were shown to infect common bean (Phaseolus vulgaris L.) in Tanzania. Virus management requires an understanding of how viruses survive from one season to the next. During this study, we explored the possibility that alternative host plants have a central role in the survival of common bean viruses. We used next-generation sequencing (NGS) techniques to sequence virus-derived small interfering RNAs together with conventional reverse-transcription PCRs (RT-PCRs) to detect viruses in wild plants. Leaf samples for RNA extraction and NGS were collected from 1,430 wild plants around and within common bean fields in four agricultural zones in Tanzania. At least partial genome sequences of viruses potentially belonging to 25 genera were detected. The greatest virus diversity was detected in the eastern and northern zones, whereas wild plants in the Lake zone and especially in the southern highlands zone showed only a few viruses. The RT-PCR analysis of all collected plant samples confirmed the presence of yam bean mosaic virus and peanut mottle virus in wild legume plants. Of all viruses detected, only two viruses, cucumber mosaic virus and a novel bromovirus related to cowpea chlorotic mottle virus and brome mosaic virus, were mechanically transmitted from wild plants to common bean plants. The data generated during this study are crucial for the development of viral disease management strategies and predicting crop viral disease outbreaks in different agricultural regions in Tanzania and beyond.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Neema Ngowi
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Paul J R Njau
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Deusdedith R Mbanzibwa
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
10
|
Belakhov VV, Boikova IV, Kolodyaznaya VA. Synthesis and Insecticidal Activity of 5-C-Phosphonate Derivatives of Aryl-1-thio-β-D-ribofuranoside. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
12
|
Sharma S, Paul PJ, Kumar CS, Rao PJ, Prashanti L, Muniswamy S, Sharma M. Evaluation and Identification of Promising Introgression Lines Derived From Wild Cajanus Species for Broadening the Genetic Base of Cultivated Pigeonpea [ Cajanus cajan (L.) Millsp.]. FRONTIERS IN PLANT SCIENCE 2019; 10:1269. [PMID: 31695710 PMCID: PMC6817623 DOI: 10.3389/fpls.2019.01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 05/07/2023]
Abstract
Pigeonpea [Cajanus cajan (L.) Millsp.], a multipurpose and nutritious grain legume crop, is cultivated for its protein-rich seeds mainly in South Asia and Eastern and Southern Africa. In spite of large breeding efforts for pigeonpea improvement in India and elsewhere, genetic enhancement is inadequate largely due to its narrow genetic base and crop susceptibility to stresses. Wild Cajanus species are novel source of genetic variations for the genetic upgradation of pigeonpea cultivars. In the present study, 75 introgression lines (ILs), derived from crosses involving cultivated pigeonpea variety ICPL 87119 and wild Cajanus cajanifolius and Cajanus acutifolius from the secondary gene pool, were evaluated for yield and yield-attributing traits in diverse environments across locations and years. Restricted maximum likelihood (REML) analysis revealed large genetic variations for days to 50% flower, days to maturity, plant height, primary branches per plant, pods per plant, pod weight per plant, 100-seed weight, and grain yield per plant. Superior ILs with mid-early to medium maturity duration identified in this study are useful genetic resources for use in pigeonpea breeding. Additive main effects and multiplicative interaction (AMMI) analysis unfolded large influence of environment and genotype × environment interaction for variations in yield. A few lines such as ICPL 15023 and ICPL 15072 with yield stability were identified, while a number of lines were completely resistant (0%) to sterility mosaic diseases and/or Fusarium wilt. These lines are novel genetic resources for broadening the genetic base of pigeonpea and bring yield stability and stress tolerance. High-yielding lines ICPL 15010, ICPL 15062, and ICPL 15072 have been included in the initial varietal trials (IVTs) of the All India Coordinated Research Project (AICRP) on pigeonpea for wider evaluation across different agro-ecological zones in India for possible release as variety(ies).
Collapse
Affiliation(s)
- Shivali Sharma
- Theme Pre-breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pronob J. Paul
- Theme Pre-breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C.V. Sameer Kumar
- Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Palem, India
| | - P. Jaganmohan Rao
- Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Warangal, India
| | - L. Prashanti
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University, Tirupati, India
| | - S. Muniswamy
- Regional Agricultural Research Station, University of Agricultural Sciences, Kalaburagi, India
| | - Mamta Sharma
- Legume Pathology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
13
|
Yang C, Zhang S, Han T, Fu J, Di Serio F, Cao M. Identification and Characterization of a Novel Emaravirus Associated With Jujube ( Ziziphus jujuba Mill.) Yellow Mottle Disease. Front Microbiol 2019; 10:1417. [PMID: 31293549 PMCID: PMC6603204 DOI: 10.3389/fmicb.2019.01417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
A previously unreported disease affecting jujube (Ziziphus jujuba Mill.) trees was observed in China (Liaoning province) in 2015 and named jujube yellow mottle disease (JYMD), due to prevalent symptoms on the leaves. Diseased plants produced also malformed and discolored fruits. In an attempt to identify the possible causal agent of JYMD, high-throughput sequencing of small RNA libraries was performed and a novel virus, tentatively named jujube yellow mottle-associated virus (JYMaV), was identified and characterized. Six genomic RNA segments of JYMaV were completely sequenced. Each one contains a single open reading frame in the viral complementary strand and two untranslated regions with complementary 5' and 3' terminal ends, thus showing typical features of other negative-stranded RNA viruses. RNA1 (7.1 kb), RNA2 (2.2 kb) and RNA3 (1.2 kb) encode putative proteins that, based on their conserved motifs, have been identified as the RNA dependent RNA polymerase, the glycoprotein and the nucleocapsid protein, respectively. These proteins share significant sequence identity (52.1-70.4%) with proteins encoded by raspberry leaf blotch virus (RLBV). RNA4 (1.5 kb) and RNA5 (1.2 kb) code for two putative 30 K movement proteins also related to the homologous RLBV protein. The functional role of the protein encoded by JYMaV RNA6 remains unknown. These data together with the phylogenetic relationships of JYMaV with other recognized emaraviruses support the proposal that JYMaV is the representative member of a novel species in the genus Emaravirus. In agreement with this proposal, virus-like particles and double-membrane-bound bodies, similar to those previously reported for other emaraviruses, were observed by transmission electron microscopy in extracts and tissues from symptomatic leaves, respectively. A specific RT-PCR-based detection method has been developed and used in a preliminary field survey that provided results strongly supporting the close association of JYMaV with the novel disease.
Collapse
Affiliation(s)
- Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tong Han
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jingjing Fu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
14
|
de Lillo E, Pozzebon A, Valenzano D, Duso C. An Intimate Relationship Between Eriophyoid Mites and Their Host Plants - A Review. FRONTIERS IN PLANT SCIENCE 2018; 9:1786. [PMID: 30564261 PMCID: PMC6288765 DOI: 10.3389/fpls.2018.01786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
Eriophyoid mites (Acari Eriophyoidea) are phytophagous arthropods forming intimate relationships with their host plants. These mites are associated with annual and perennial plants including ferns, and are highly specialized with a dominant monophagy. They can be classified in different ecological classes, i.e., vagrant, gall-making and refuge-seeking species. Many of them are major pests and some of them are vectors of plant pathogens. This paper critically reviews the knowledge on eriophyoids of agricultural importance with emphasis on sources for host plant resistance to these mites. The role of species belonging to the family Eriophyidae as vectors of plant viruses is discussed. Eriophyoid-host plant interactions, the susceptibility within selected crops and main host plant tolerance/resistance mechanisms are discussed. Fundamental concepts, subjects, and problems emerged in this review are pointed out and studies are suggested to clarify some controversial points.
Collapse
Affiliation(s)
- Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Domenico Valenzano
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Xin M, Cao M, Liu W, Ren Y, Zhou X, Wang X. Two Negative-Strand RNA Viruses Identified in Watermelon Represent a Novel Clade in the Order Bunyavirales. Front Microbiol 2017; 8:1514. [PMID: 28848524 PMCID: PMC5552725 DOI: 10.3389/fmicb.2017.01514] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
Two novel negative-sense, single-stranded (ss) RNA viruses were identified in watermelon plants and named watermelon crinkle leaf-associated virus 1 and 2 (WCLaV-1 and -2), respectively. The multipartite genomes consist of three RNA molecules of ~6.8, 1.4, and 1.3 kb. The genomes and the deduced proteins of RNA1 and RNA3 show features resembling those of members in the genus Phlebovirus and Tenuivirus; however, the predicted proteins encoded by RNA2 are related to the movement protein (MP) in the genus Ophiovirus and Emaravirus. Furthermore, these two viruses define a novel clade in the family Phenuiviridae, order Bunyavirales, which is phylogenetically related to the viruses in the above four genera. Moreover, after mechanical inoculation with WCLaV-1 seedlings of the natural host watermelon plants develop crinkling similar to those observed in the field. These findings enhance our understanding of the evolution and the classification of ssRNA viruses.
Collapse
Affiliation(s)
- Min Xin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
16
|
Patil BL, Dangwal M, Mishra R. Variability of Emaravirus Species Associated with Sterility Mosaic Disease of Pigeonpea in India Provides Evidence of Segment Reassortment. Viruses 2017; 9:E183. [PMID: 28696402 PMCID: PMC5537675 DOI: 10.3390/v9070183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022] Open
Abstract
Sterility mosaic disease (SMD) of pigeonpea is a serious constraint for cultivation of pigeonpea in India and other South Asian countries. SMD of pigeonpea is associated with two distinct emaraviruses, Pigeonpea sterility mosaic virus 1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2), with genomes consisting of five and six negative-sense RNA segments, respectively. The recently published genome sequences of both PPSMV-1 and PPSMV-2 are from a single location, Patancheru from the state of Telangana in India. However, here we present the first report of sequence variability among 23 isolates of PPSMV-1 and PPSMV-2, collected from ten locations representing six states of India. Both PPSMV-1 and PPSMV-2 are shown to be present across India and to exhibit considerable sequence variability. Variability of RNA3 sequences was higher than the RNA4 sequences for both PPSMV-1 and PPSMV-2. Additionally, the sixth RNA segment (RNA6), previously reported to be associated with only PPSMV-2, is also associated with isolates of PPSMV-1. Multiplex reverse transcription PCR (RT-PCR) analyses show that PPSMV-1 and PPSMV-2 frequently occur as mixed infections. Further sequence analyses indicated the presence of reassortment of RNA4 between isolates of PPSMV-1 and PPSMV-2.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi 110012, India.
| | - Meenakshi Dangwal
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi 110012, India.
| | - Ritesh Mishra
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
17
|
Abstract
Members of the genus Emaravirus are plant viruses transmitted by eriophyoid mites. The emaravirus genome consists of multiple, negative-sense, single-stranded RNA segments, that have been shown to be highly divergent. Recent studies have revealed that emaraviruses are associated with long-recognized diseases of world important crops such as fig mosaic disease or sterility mosaic disease of pigeon pea. Furthermore, along with the popularization of deep sequencing technologies, new putative members of emaraviruses have been reported year by year. This paper presents an overview of agricultural damages caused by emaraviruses worldwide and characteristics of their genomic RNAs and proteins. In addition, our research project to prevent a disease of a herb crop (shiso, Perilla frutescens) caused by Perilla mosaic virus, a putative emaravirus recently identified in Japan, is outlined.
Collapse
|