1
|
Todd OE, Simpson S, Scheffler B, Dorn KM. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. DNA Res 2024; 32:dsae032. [PMID: 39589284 PMCID: PMC11747354 DOI: 10.1093/dnares/dsae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Sugar beet (Beta vulgaris L.) is a global source of table sugar and animal fodder. Here we report a highly contiguous, haplotype phased genome assembly and annotation for sugar beet line FC309. Both assembled haplomes for FC309 represent the largest and most contiguous assembled beet genomes reported to date, as well as gene annotations sets that capture over 1,500 additional protein-coding loci compared to prior beet genome annotations. These new genomic resources were used to identify novel quantitative trait loci (QTL) for Fusarium yellows resistance from the FC309 genetic background using an F2 mapping-by-sequencing approach. The highest QTL signals were detected on Chromosome 3, spanning approximately 10Mbp in both haplomes. A parallel transcriptome profiling experiment identified candidate genes within the Chromosome 3 QTL with plausible roles in disease response, including NBS-LRR genes with expression trends supporting a role in resistance. Investigation of genetic variants in these candidate genes found 1 major disease-resistance protein containing high-effect variants of interest. Collectively, the genomic resources for FC309 presented here are foundational tools for comparative genomics, mapping other traits in the FC309 background, and as a reference genome for other beet studies due to its contiguity, completeness, and high-quality gene annotations.
Collapse
Affiliation(s)
- Olivia E Todd
- USDA-ARS, Soil Management and Sugar Beet Research Unit, Fort Collins, CO 80525, USA
| | - Sheron Simpson
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Brian Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Kevin M Dorn
- USDA-ARS, Soil Management and Sugar Beet Research Unit, Fort Collins, CO 80525, USA
| |
Collapse
|
2
|
Liu H, Wang D, Wang Z, Zhao T, Zhang J, Wang Y, Qiao H, Han Y. Identification of MAPK Genes in Phaseolus vulgaris and Analysis of Their Expression Patterns in Response to Anthracnose. Int J Mol Sci 2024; 25:13101. [PMID: 39684810 DOI: 10.3390/ijms252313101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The oil bean is a high-quality, economically valuable variety of kidney bean (Phaseolus vulgaris L.) that is widely cultivated in Northeast China. However, the prevalence of anthracnose, caused by a combination of factors, including continuous cropping over many years, has led to significant declines in both yield and quality. The mitogen-activated protein kinase (MAPK) cascade is a highly conserved plant cell signaling pathway that plays a pivotal role in plant growth and development, as well as responses to biotic stress. However, its role in the response of P. vulgaris to anthracnose infection has not previously been reported. We identified and characterized thirteen MAPK genes (PvMAPK01-PvMAPK13) in the P. vulgaris genome. These genes were found on eight of the eleven chromosomes of P. vulgaris, and phylogenetic analyses classified them into four previously established subgroups (A-D). Analysis of the cis-acting elements in their promoter regions revealed the presence of multiple elements associated with light, hormone regulation, stress responses, and growth and development. An analysis of intraspecific collinearity revealed that whole-genome and/or segmental duplication, rather than tandem duplication, has been the primary driver of PvMAPK family expansion in P. vulgaris. Transcriptome data revealed that the PvMAPKs differed in their tissue-specific expression patterns, with PvMAPK05 showing particularly high expression in stems and stem tips and PvMAPK07 and PvMAPK11 showing relatively low expression across all tissues. In general, expression of the PvMAPKs was higher in stems, stem tips, and pods than in other tissues and organs, suggesting that they may be particularly important for regulating stem and pod development. Analysis of the expression of PvMAPKs in field-grown plants infected or uninfected with anthracnose revealed that the relative expression levels of PvMAPK05, PvMAPK07, PvMAPK09, and PvMAPK11 exhibited particularly significant changes in response to anthracnose infection across different varieties, suggesting their potential involvement in the anthracnose response of Phaseolus vulgaris. This study reports the fundamental characteristics of the thirteen MAPK genes in P. vulgaris, documents their expression patterns in diverse tissues, and offers preliminary insights into their responses to anthracnose infection, establishing a foundation for subsequent functional validation.
Collapse
Affiliation(s)
- Huiling Liu
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Da Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyu Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Tong Zhao
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Jingying Zhang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Yan Wang
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Qiao
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Yuzhu Han
- Modern Vegetable Industry Technology and Germplasm Resource Innovation Team, Northeast Asia Special Germplasm Resource Conservation and Innovation Center Vegetable Breeding Technology Innovation Team, College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Zhao N, Guo A, Wang W, Li B, Wang M, Zhou Z, Jiang K, Aierxi A, Wang B, Adjibolosoo D, Xia Z, Li H, Cui Y, Kong J, Hua J. GbPP2C80 Interacts with GbWAKL14 to Negatively Co-Regulate Resistance to Fusarium and Verticillium wilt via MPK3 and ROS Signaling in Sea Island Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309785. [PMID: 38889299 PMCID: PMC11321686 DOI: 10.1002/advs.202309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Fusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior-fiber-quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton. Silencing GbPP2C80 increases FW resistance in Sea Island cotton, whereas overexpressing GbPP2C80 reduces FW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 exist synergistically in Sea Island cotton accessions with haplotype forms "susceptible-susceptible" (TA) and "resistant-resistant" (CC), and interact with each other. CRISPR/Cas9-mediated knockout of GbWAKL14 enhances FW and Verticillium wilt (VW) resistance in upland cotton and overexpression of GbWAKL14 and GbPP2C80 weakens FW and VW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 respond to FW and VW by modulating reactive oxygen species (ROS) content via affecting MPK3 expression. In summary, two tandem genes on chromosome D03, GbPP2C80, and GbWAKL14, functions as cooperative negative regulators in cotton wilt disease defense, providing novel genetic resources and molecular markers for the development of resistant cotton cultivars.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Anhui Guo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Meng Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Zixin Zhou
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Baoliang Wang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Daniel Adjibolosoo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Zhanghao Xia
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Huijing Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Yanan Cui
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
4
|
Mi X, Li W, Chen C, Xu H, Wang G, Jin X, Zhang D, Guo W. GhMPK9-GhRAF39_1-GhWRKY40a Regulates the GhERF1b- and GhABF2-Mediated Pathways to Increase Cotton Disease Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404400. [PMID: 38845189 PMCID: PMC11304259 DOI: 10.1002/advs.202404400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Indexed: 08/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascade is the center of plant signal transduction system that amplify immune signals into cellular responses by phosphorylating diverse substrates. The MAPK cascade consisting of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs is well characterized in plants, in which Raf-like kinases are generally regarded as MAPKKKs. However, it is rarely reported that Raf-like MAPKKKs function as middle regulators to link MAPK and its downstream transcription factors in plant immunity. Verticillium wilt, caused by the soil-borne vascular fungus Verticillium dahliae, is a serious disease in many plants, including cotton. The previous studies showed that GhMPK9 (a MAPK) is involved in the response to Verticillium wilt. Here, the Raf-like kinase GhRAF39_1 is reported as helper regulates the phosphorylation of WRKY transcription factor GhWRKY40a by GhMPK9. The phosphorylated GhWRKY40a can further activate the transcription of GhERF1b to up-regulate defense-related genes while inhibit the transcription of GhABF2 to regulate the stomatal opening, thus improving the resistance to Verticillium wilt in cotton. This study reveals a new signaling module of GhMPK9-GhRAF39_1-GhWRKY40a to regulate GhERF1b- and GhABF2-mediated defense responses, which triggers plant defense against Verticillium wilt.
Collapse
Affiliation(s)
- Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chuan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationEngineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
5
|
Gao X, Xin D, Zhao Y, Li J, Cao Y, Zhang S, Guo J. Potential molecular mechanism of photosynthesis regulation by PeMPK7 in poplar under para-hydroxybenzoic acid stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116329. [PMID: 38626604 DOI: 10.1016/j.ecoenv.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Due to continuous plantation of poplar, its growth and biomass accumulation may be negatively affected by the accumulation of allelochemicals such as para-hydroxybenzoic acid (pHBA) in soil. As photosynthesis is the most fundamental process in plants, it can be negatively impacted by pHBA stress. Therefore, it is crucial to improve photosynthetic capacity under pHBA stress to facilitate poplar plant growth. The mitogen-activated protein kinase (MAPK) cascade pathway is widely involved in environmental stress responses in plants. However, the regulation mechanisms of photosynthesis-related pathways by MAPK pathway genes under pHBA stress are still unclear. In this study, through transcriptome analysis and weighted gene co-expression network analysis, we observed that PeMPK7 overexpression in poplar can regulate the expression of photosynthesis-related genes and transcription factor genes, namely, WRKY1, WRKY33, and ERF3, during the early stage of pHBA stress. In addition, PeMPK7 can improve photosynthesis in poplar under long-term pHBA stress. Moreover, yeast two-hybrid and pull-down assays confirmed the interaction between PeMPK7 and PeMKK7/10. Based on these results, a schematic diagram of the pathways involved in the regulation of photosynthesis by PeMPK7 was constructed. This study provided novel insights into the molecular mechanisms of regulation of pHBA stress via MAPK cascade pathway.
Collapse
Affiliation(s)
- Xue Gao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Di Xin
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Ye Zhao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Junru Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangfan Cao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Wang F, Liang S, Wang G, Wang Q, Xu Z, Li B, Fu C, Fan Y, Hu T, Alariqi M, Hussain A, Cao J, Li J, Zhang X, Jin S. Comprehensive analysis of MAPK gene family in upland cotton (Gossypium hirsutum) and functional characterization of GhMPK31 in regulating defense response to insect infestation. PLANT CELL REPORTS 2024; 43:102. [PMID: 38499710 PMCID: PMC10948490 DOI: 10.1007/s00299-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jian Li
- The Southern Xinjiang Research Institute of Shihezi University, TuMu ShuKe, Xinjiang, 843900, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Yadav P, Sharma K, Tiwari N, Saxena G, Asif MH, Singh S, Kumar M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023; 13:390. [PMID: 37942053 PMCID: PMC10630269 DOI: 10.1007/s13205-023-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Fusarium wilt is the most destructive soil-borne disease that poses a major threat to chickpea production. To comprehensively understand the interaction between chickpea and Fusarium oxysporum, the xylem-specific transcriptome analysis of wilt-resistant (WR315) and wilt-susceptible (JG62) genotypes at an early timepoint (4DPI) was investigated. Differential expression analysis showed that 1368 and 348 DEGs responded to pathogen infection in resistant and susceptible genotypes, respectively. Both genotypes showed transcriptional reprogramming in response to Foc2, but the responses in WR315 were more severe than in JG62. Results of the KEGG pathway analysis revealed that most of the DEGS in both genotypes with enrichment in metabolic pathways, secondary metabolite biosynthesis, plant hormone signal transduction, and carbon metabolism. Genes associated with defense-related metabolites synthesis such as thaumatin-like protein 1b, cysteine-rich receptor-like protein kinases, MLP-like proteins, polygalacturonase inhibitor 2-like, ethylene-responsive transcription factors, glycine-rich cell wall structural protein-like, beta-galactosidase-like, subtilisin-like protease, thioredoxin-like protein, chitin elicitor receptor kinase-like, proline transporter-like, non-specific lipid transfer protein and sugar transporter were mostly up-regulated in resistant as compared to susceptible genotypes. The results of this study provide disease resistance genes, which would be helpful in understanding the Foc resistance mechanism in chickpea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03803-9.
Collapse
Affiliation(s)
- Pooja Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Kritika Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Garima Saxena
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mehar H. Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swati Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
8
|
Zhang J, Wang S, Wang H, He P, Chang Y, Zheng W, Tang X, Li L, Wang C, He X. Metabolome and Transcriptome Profiling Reveals the Function of MdSYP121 in the Apple Response to Botryosphaeria dothidea. Int J Mol Sci 2023; 24:16242. [PMID: 38003432 PMCID: PMC10671699 DOI: 10.3390/ijms242216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The vesicular transport system is important for substance transport in plants. In recent years, the regulatory relationship between the vesicular transport system and plant disease resistance has received widespread attention; however, the underlying mechanism remains unclear. MdSYP121 is a key protein in the vesicular transport system. The overexpression of MdSYP121 decreased the B. dothidea resistance of apple, while silencing MdSYP121 resulted in the opposite phenotype. A metabolome and transcriptome dataset analysis showed that MdSYP121 regulated apple disease resistance by significantly affecting sugar metabolism. HPLC results showed that the levels of many soluble sugars were significantly higher in the MdSYP121-OE calli. Furthermore, the expression levels of genes related to sugar transport were significantly higher in the MdSYP121-OE calli after B. dothidea inoculation. In addition, the relationships between the MdSYP121 expression level, the soluble sugar content, and apple resistance to B. dothidea were verified in an F1 population derived from a cross between 'Golden Delicious' and 'Fuji Nagafu No. 2'. In conclusion, these results suggested that MdSYP121 negatively regulated apple resistance to B. dothidea by influencing the soluble sugar content. These technologies and methods allow us to investigate the molecular mechanism of the vesicular transport system regulating apple resistance to B. dothidea.
Collapse
Affiliation(s)
- Jiahu Zhang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Sen Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Haibo Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Ping He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Yuansheng Chang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Wenyan Zheng
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Xiao Tang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Linguang Li
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Xiaowen He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| |
Collapse
|
9
|
Niu Y, Li J, Zhao Y, Xin D, Gao X, Zhang S, Guo J. PeMPK17 interacts with PeMKK7 and participates in para-hydroxybenzoic acid stress resistance by removing reactive oxygen species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115167. [PMID: 37354565 DOI: 10.1016/j.ecoenv.2023.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Mitogen-activated protein kinase (MAPK) plays a crucial role in plant stress response. Poplar is one of the most important afforestation and timber species and inevitably encounters allelopathy effects during continuous cropping. para-hydroxybenzoic acid (pHBA) is a primary soil allelochemical, which can restrict the growth and biomass of poplar. However, the involvement of MAPKs in the underlying physiological and molecular regulatory mechanisms in response to pHBA stress remains unclear. In this study, PeMPK17, a gene encoding a group D MAPK, was cloned from Populus × euramericana. PeMPK17 protein was localized in both nucleus and plasma membrane. Quantitative real-time polymerase chain reaction analysis demonstrated that PeMPK17 expression in poplar increased when treated with pHBA, PEG, and H2O2. Exogenous pHBA and H2O2 induced PeMPK17 expression mediated by reactive oxygen species (ROS). The transgenic poplar plants overexpressing PeMPK17 demonstrated attenuated phenotypic injury, higher relative water content in leaves, and lower ion leakage under pHBA stress. In transgenic poplar, the activity and expression of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased, while the content of H2O2, O2·-, and malondialdehyde decreased. These results suggested that PeMPK17 protects cell membranes from oxidative damage by removing excess ROS. In addition, overexpression of PeMPK17 promoted osmoprotectant accumulation including soluble sugar and free proline, which may aid in the regulation of ROS balance under pHBA treatment. Furthermore, the interaction between PeMPK17 and PeMKK7 was confirmed. Collectively, these data identify the molecular mechanisms and signal pathways associated with PeMPK17 that regulate pHBA response in poplar.
Collapse
Affiliation(s)
- Yajie Niu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Junru Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Ye Zhao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Di Xin
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Gao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
10
|
Zhang C, Luo Q, Tang W, Ma J, Yang D, Chen J, Gao F, Sun H, Xie Y. Transcriptome Characterization and Gene Changes Induced by Fusarium solani in Sweetpotato Roots. Genes (Basel) 2023; 14:genes14050969. [PMID: 37239329 DOI: 10.3390/genes14050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Sweetpotato (Ipomoea batatas) is an important root crop that is infected by Fusarium solani in both seedling and root stages, causing irregular black or brown disease spots and root rot and canker. This study aims to use RNA sequencing technology to investigate the dynamic changes in root transcriptome profiles between control check and roots at 6 h, 24 h, 3 days, and 5 days post-inoculation (hpi/dpi) with F. solani. The results showed that the defense reaction of sweetpotato could be divided into an early step (6 and 24 hpi) without symptoms and a late step to respond to F. solani infection (3 and 5 dpi). The differentially expressed genes (DEGs) in response to F. solani infection were enriched in the cellular component, biological process, and molecular function, with more DEGs in the biological process and molecular function than in the cellular component. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the main pathways were metabolic pathways, the biosynthesis of secondary metabolites, and carbon metabolism. More downregulated genes were identified than upregulated genes in the plant-pathogen interaction and transcription factors, which might be related to the degree of host resistance to F. solani. The findings of this study provide an important basis to further characterize the complex mechanisms of sweetpotato resistance against biotic stress and identify new candidate genes for increasing the resistance of sweetpotato.
Collapse
Affiliation(s)
- Chengling Zhang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Qinchuan Luo
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Wei Tang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jukui Ma
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Dongjing Yang
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Jingwei Chen
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Fangyuan Gao
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Houjun Sun
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| | - Yiping Xie
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, China
| |
Collapse
|
11
|
Overexpression of CmWRKY8-1- VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium. Int J Mol Sci 2023; 24:ijms24043499. [PMID: 36834908 PMCID: PMC9964100 DOI: 10.3390/ijms24043499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chrysanthemum Fusarium wilt, caused by the pathogenic fungus Fusarium oxysporum, severely reduces ornamental quality and yields. WRKY transcription factors are extensively involved in regulating disease resistance pathways in a variety of plants; however, it is unclear how members of this family regulate the defense against Fusarium wilt in chrysanthemums. In this study, we characterized the WRKY family gene CmWRKY8-1 from the chrysanthemum cultivar 'Jinba', which is localized to the nucleus and has no transcriptional activity. We obtained CmWRKY8-1 transgenic chrysanthemum lines overexpressing the CmWRKY8-1-VP64 fusion protein that showed less resistance to F. oxysporum. Compared to Wild Type (WT) lines, CmWRKY8-1 transgenic lines had lower endogenous salicylic acid (SA) content and expressed levels of SA-related genes. RNA-Seq analysis of the WT and CmWRKY8-1-VP64 transgenic lines revealed some differentially expressed genes (DEGs) involved in the SA signaling pathway, such as PAL, AIM1, NPR1, and EDS1. Based on Gene Ontology (GO) enrichment analysis, the SA-associated pathways were enriched. Our results showed that CmWRKY8-1-VP64 transgenic lines reduced the resistance to F. oxysporum by regulating the expression of genes related to the SA signaling pathway. This study demonstrated the role of CmWRKY8-1 in response to F. oxysporum, which provides a basis for revealing the molecular regulatory mechanism of the WRKY response to F. oxysporum infestation in chrysanthemum.
Collapse
|
12
|
Liu L, Li X, Guo W, Shi J, Chen W, Lei Y, Ma Y, Dai H. MdWRKY120 Enhance Apple Susceptibility to Alternaria alternata. PLANTS (BASEL, SWITZERLAND) 2022; 11:3389. [PMID: 36501429 PMCID: PMC10004717 DOI: 10.3390/plants11233389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Alternaria alternata (A. alternata) is a common pathogen that greatly influences apples' quantity and quality. However, chemical treatments produce increased health risks along with decreased food and environmental safety. Advancements in plant molecular biology, such as transgenic technology, have increased apple trees' resistance to pathogens and have therefore attracted widespread attention. WRKY transcription factors are involved in abiotic and biotic stress regulation; however, their biological role in non-model plants such as apple, is still unknown. In this investigation, MdWRKY120 was isolated from the 'GL-3' apple to determine its function during Alternaria alternate infection. The MdWRKY120-GFP fusion protein was located in the nucleus. MdWRKY120 in yeast cells exhibited activating transcriptional activity, meaning it is a transcription activator. MdWRKY120 overexpression transgenic plants were more sensitive to A. alternata, while RNAi transgenic plants showed increased resistance to A. alternata. This investigation demonstrates that MdWRKY120 enhances the susceptibility of apples to A. alternata.
Collapse
Affiliation(s)
- Lifu Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- School of Horticulture, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
| | - Xiaoming Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
13
|
Man M, Zhu Y, Liu L, Luo L, Han X, Qiu L, Li F, Ren M, Xing Y. Defense Mechanisms of Cotton Fusarium and Verticillium Wilt and Comparison of Pathogenic Response in Cotton and Humans. Int J Mol Sci 2022; 23:12217. [PMID: 36293072 PMCID: PMC9602609 DOI: 10.3390/ijms232012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.
Collapse
Affiliation(s)
- Mingwu Man
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yaqian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinpei Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Yadi Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
14
|
Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. THE NEW PHYTOLOGIST 2022; 236:249-265. [PMID: 35727190 DOI: 10.1111/nph.18329] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/09/2022] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors (TFs) are crucial regulators in response to pathogen infection. However, the regulatory mechanisms of WRKY TFs in response to Fusarium oxysporum f. sp. vasinfectum (Fov), the most devastating pathogen of cotton, remain unclear. Here, transcriptome sequencing indicated that the group IIc WRKY TF subfamily was the most important TF subfamily in response to Fov. Gain-of-function and loss-of-function analyses showed that group IIc WRKY TFs positively regulated cotton resistance to Fov. A series of chromatin immunoprecipitation sequencing, yeast one-hybrid assay and electrophoresis mobility shift assay experiments indicated that group IIc WRKY TFs directly bound to the promoter of GhMKK2 and regulated its expression. Importantly, a novel mitogen-activated protein kinase (MAPK) cascade composed of GhMKK2, GhNTF6 and GhMYC2 was identified. The functional analysis indicated that group IIc WRKY TFs induced the GhMKK2-GhNTF6 pathway to increase resistance to Fov by upregulating the GhMYC2-mediated expression of several flavonoid biosynthesis-related genes, which led to flavonoid accumulation. In conclusion, our study demonstrated a novel disease defense mechanism by which the WRKY-MAPK pathway promotes flavonoid biosynthesis to defend against pathogen infection. This pathway improves our understanding of the interaction mode between WRKY TFs and MAPK cascades in plant immunity and the vital role of plant flavonoids in pathogen defense.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
15
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
16
|
Meng X, Yu Y, Song T, Yu Y, Cui N, Ma Z, Chen L, Fan H. Transcriptome Sequence Analysis of the Defense Responses of Resistant and Susceptible Cucumber Strains to Podosphaera xanthii. FRONTIERS IN PLANT SCIENCE 2022; 13:872218. [PMID: 35645993 PMCID: PMC9134894 DOI: 10.3389/fpls.2022.872218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii poses a continuous threat to the performance and yield of the cucumber (Cucumis sativus L.). Control in the initial stages of infection is particularly important. Here, we studied the differential physiological and transcriptomic changes between PM-resistant strain B21-a-2-1-2 and PM-susceptible strain B21-a-2-2-2 at the early stage of P. xanthii attack. When challenged with P. xanthii, the tolerant line can postpone the formation of the pathogen primary germ. Comparative transcriptomic analysis suggested that DEGs related to the cell wall and to pathogen and hormone responses were similar enriched in both cucumber lines under P. xanthii infection. Notably, the number of DEGs triggered by P. xanthii in B21-a-2-1-2 was quintuple that in B21-a-2-2-2, revealing that the success of defense of resistant cucumber is due to rapidly mobilizing multiple responses. The unique responses detected were genes related to SA signaling, MAPK signaling, and Dof and WRKY transcription factors. Furthermore, 5 P. xanthii -inducible hub genes were identified, including GLPK, ILK1, EIN2, BCDHβ1, and RGGA, which are considered to be key candidate genes for disease control. This study combined multiple analytical approaches to capture potential molecular players and will provide key resources for developing cucumber cultivars resistant to pathogen stress.
Collapse
Affiliation(s)
- Xiangnan Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Tiefeng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Integrative Analysis of Expression Profiles of mRNA and MicroRNA Provides Insights of Cotton Response to Verticillium dahliae. Int J Mol Sci 2022; 23:ijms23094702. [PMID: 35563093 PMCID: PMC9099760 DOI: 10.3390/ijms23094702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Cotton Verticillium wilt, caused by the notorious fungal phytopathogen Verticillium dahliae (V. dahliae), is a destructive soil-borne vascular disease and severely decreases cotton yield and quality worldwide. Transcriptional and post-transcriptional regulation of genes responsive to V. dahliae are crucial for V. dahliae tolerance in plants. However, the specific microRNAs (miRNAs) and the miRNA/target gene crosstalk involved in cotton resistance to Verticillium wilt remain largely limited. To investigate the roles of regulatory RNAs under V. dahliae induction in upland cotton, mRNA and small RNA libraries were constructed from mocked and infected roots of two upland cotton cultivars with the V. dahliae-sensitive cultivar Jimian 11 (J11) and the V. dahliae-tolerant cultivar Zhongzhimian 2 (Z2). A comparative transcriptome analysis revealed 8330 transcripts were differentially expressed under V. dahliae stress and associated with several specific biological processes. Moreover, small RNA sequencing identified a total of 383 miRNAs, including 330 unique conserved miRNAs and 53 novel miRNAs. Analysis of the regulatory network involved in the response to V. dahliae stress revealed 31 differentially expressed miRNA−mRNA pairs, and the up-regulation of GhmiR395 and down-regulation of GhmiR165 were possibly involved in the response to V. dahliae by regulating sulfur assimilation through the GhmiR395-APS1/3 module and the establishment of the vascular pattern and secondary cell wall formation through GhmiR165-REV module, respectively. The integrative analysis of mRNA and miRNA expression profiles from upland cotton lays the foundation for further investigation of regulatory mechanisms of resistance to Verticillium wilt in cotton and other crops.
Collapse
|
18
|
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep 2022; 23:e53817. [PMID: 35041234 PMCID: PMC8811656 DOI: 10.15252/embr.202153817] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.
Collapse
Affiliation(s)
- Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
19
|
Dai Y, Lu Y, Zhou Z, Wang X, Ge H, Sun Q. B-box containing protein 1 from Malus domestica (MdBBX1) is involved in the abiotic stress response. PeerJ 2022; 10:e12852. [PMID: 35178298 PMCID: PMC8815370 DOI: 10.7717/peerj.12852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
B-box proteins (BBXs), which act as transcription factors, mainly regulate photomorphogenesis. However, the molecular functions underlying the activity of plant BBXs in response to abiotic stress remain largely unclear. In this investigation, we found that a BBX from Malus domestica (MdBBX1) was involved in the response to various abiotic stresses. The expression of MdBBX1 was significantly upregulated in response to abiotic stresses and abscisic acid (ABA). Recombinant MdBBX1 increased stress tolerance in Escherichia coli cells. In addition, overexpression of MdBBX1 in Arabidopsis decreased sensitivity to exogenous ABA, resulting in a germination rate and root length that were greater and longer, respectively, than those of wild-type (WT) plants. Moreover, the expression of ABI5 was decreased in MdBBX1-overexpressing lines under ABA treatment. After salt and drought treatments, compared with the WT plants, the MdBBX1 transgenic plants displayed enhanced tolerance and had a higher survival rate. Furthermore, under salt stress, increased proline (PRO) contents, decreased levels of malondialdehyde (MDA), increased activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) and decreased accumulation of reactive oxygen species (ROS) were observed in the MdBBX1-overexpressing plants. Overall, our results provide evidence that MdBBX1 might play a critical role in the regulation of abiotic stress tolerance by reducing the generation of ROS.
Collapse
Affiliation(s)
- Yaqing Dai
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Lu
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China,Institute of Shandong River Wetlands, Jinan, Shandong, China
| | - Zhou Zhou
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Hongjuan Ge
- Qingdao Academy of Agricultural Science, Qingdao, Shandong, China
| | - Qinghua Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
20
|
Zhou J, Wu Y, Zhang X, Zhao L, Feng Z, Wei F, Zhang Y, Feng H, Zhou Y, Zhu H. MPK homolog GhNTF6 was involved in cotton against Verticillium wilt by interacted with VdEPG1. Int J Biol Macromol 2022; 195:456-465. [PMID: 34920061 DOI: 10.1016/j.ijbiomac.2021.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022]
Abstract
Mitogen-activated protein kinases (MPKs) are important in regulating plant development and stress response. Rapid activation of MPKs in plants usually depends on its phosphorylated. In view of this situation, a phosphorylated GhNTF6 belonged to MPKs family was screened in cotton roots under Verticillium dahliae challenge by phosphoproteomics analysis. Expression of GhNTF6 in cotton plants was did not induce by V. dahliae infection, while, silencing GhNTF6 results to enhance cotton plants susceptibility to V. dahliae, overexpression - GhNTF6 enhance Arabidopsis plants survivability to V. dahliae. Moreover, the mutation of GhNTF6 at site Thr195 and Thy197 with the phosphorylation decreased the plant resistance to V. dahliae. Therefore, GhNTF6 phosphorylation is important in plants against V. dahliae. Further analysis demonstrated that GhNTF6 interacted with a V. dahliae endopolygalacturonase (VdEPG1) on the cell nucleus. We propose that GhNTF6 is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Jinglong Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
21
|
Ning K, Li M, Wei G, Zhou Y, Zhang G, Huai H, Wei F, Chen Z, Wang Y, Dong L, Chen S. Genomic and Transcriptomic Analysis Provide Insights Into Root Rot Resistance in Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2021; 12:775019. [PMID: 34975957 PMCID: PMC8714957 DOI: 10.3389/fpls.2021.775019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Panax notoginseng (Burk.) F.H. Chen), a plant of high medicinal value, is severely affected by root rot during cultivation. Here, we generated a reference genome of P. notoginseng, with a contig N50 size of 241.268 kb, and identified 66 disease-resistance genes (R-genes) as candidate genes for breeding disease-resistant varieties. We then investigated the molecular mechanism underlying the responses of resistant and susceptible P. notoginseng genotypes to Fusarium oxysporum infection at six time points by RNA-seq. Functional analysis of the genes differentially expressed between the two genotypes indicated that genes involved in the defense response biological process like hormone transduction and plant-pathogen interaction are continuously and highly expressed in resistant genotype during infection. Moreover, salicylic acid and jasmonic acid levels gradually increased during infection in the resistant genotype. Coexpression analysis showed that PnWRKY22 acts as a hub gene in the defense response of the resistant genotype. Finally, transiently overexpressing PnWRKY22 increased salicylic acid levels in P. notoginseng leaves. Our findings provide a theoretical basis for studying root rot resistance in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huai
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Wang J, Wang L, Yan Y, Zhang S, Li H, Gao Z, Wang C, Guo X. GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. PLANT CELL REPORTS 2021; 40:2135-2150. [PMID: 32888081 DOI: 10.1007/s00299-020-02590-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE We report that GhWRKY21, a WRKY transcription factor, plays essential roles in regulating the intensity of the drought-induced ABA signalling pathway by facilitating the expression of GhHAB in cotton (Gossypium hirsutum). Abscisic acid (ABA) is one of the most important plant hormones in response to abiotic stress. However, activation of the ABA signalling pathway often leads to growth inhibition. The mechanisms that regulate the intensity of ABA signals are poorly understood. Here, we isolated and analysed the cotton group IId WRKY transcription factor (TF) gene GhWRKY21. Functional analysis indicated that GhWRKY21 plays a negative role in the drought response of cotton. Silencing of GhWRKY21 in cotton dramatically increased drought tolerance, whereas ectopic GhWRKY21 overexpression in Nicotiana benthamiana decreased drought tolerance. Furthermore, the GhWRKY21-mediated drought tolerance was ABA dependent. To clarify the mechanism underlying the GhWRKY21-mediated regulation of drought tolerance, 17 clade-A-type type 2C protein phosphatase (PP2C) genes, which are negative regulators of ABA signalling, were identified in cotton. Notably, GhWRKY21 interacted specifically with the W-box element within the promoter of GhHAB and regulated its expression. Silencing of GhHAB in cotton yielded a phenotype similar to that of GhWRKY21-silenced cotton. These results suggest that GhWRKY21 regulates the intensity of ABA signals by facilitating the expression of GhHAB. In summary, these findings dramatically improve our understanding of the function of WRKY TFs and provide insights into the mechanism of ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
24
|
Wu G, Zhang Y, Wang B, Li K, Lou Y, Zhao Y, Liu F. Proteomic and Transcriptomic Analyses Provide Novel Insights into the Crucial Roles of Host-Induced Carbohydrate Metabolism Enzymes in Xanthomonas oryzae pv. oryzae Virulence and Rice-Xoo Interaction. RICE (NEW YORK, N.Y.) 2021; 14:57. [PMID: 34176023 PMCID: PMC8236019 DOI: 10.1186/s12284-021-00503-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating rice disease. The Xoo-rice interaction, wherein wide ranging host- and pathogen-derived proteins and genes wage molecular arms race, is a research hotspot. Hence, the identification of novel rice-induced Xoo virulence factors and characterization of their roles affecting rice global gene expression profiles will provide an integrated and better understanding of Xoo-rice interactions from the molecular perspective. RESULTS Using comparative proteomics and an in vitro interaction system, we revealed that 5 protein spots from Xoo exhibited significantly different expression patterns (|fold change| > 1.5) at 3, 6, 12 h after susceptible rice leaf extract (RLX) treatment. MALDI-TOF MS analysis and pathogenicity tests showed that 4 host-induced proteins, including phosphohexose mutase, inositol monophosphatase, arginase and septum site-determining protein, affected Xoo virulence. Among them, mutants of two host-induced carbohydrate metabolism enzyme-encoding genes, ΔxanA and Δimp, elicited enhanced defense responses and nearly abolished Xoo virulence in rice. To decipher rice differentially expressed genes (DEGs) associated with xanA and imp, transcriptomic responses of ΔxanA-treated and Δimp-treated susceptible rice were compared to those in rice treated with PXO99A at 1 and 3 dpi. A total of 1521 and 227 DEGs were identified for PXO99A vs Δimp at 1 and 3 dpi, while for PXO99A vs ΔxanA, there were 131 and 106 DEGs, respectively. GO, KEGG and MapMan analyses revealed that the DEGs for PXO99A vs Δimp were mainly involved in photosynthesis, signal transduction, transcription, oxidation-reduction, hydrogen peroxide catabolism, ion transport, phenylpropanoid biosynthesis and metabolism of carbohydrates, lipids, amino acids, secondary metabolites, hormones, and nucleotides, while the DEGs from PXO99A vs ΔxanA were predominantly associated with photosynthesis, signal transduction, oxidation-reduction, phenylpropanoid biosynthesis, cytochrome P450 and metabolism of carbohydrates, lipids, amino acids, secondary metabolites and hormones. Although most pathways were associated with both the Δimp and ΔxanA treatments, the underlying genes were not the same. CONCLUSION Our study identified two novel host-induced virulence factors XanA and Imp in Xoo, and revealed their roles in global gene expression in susceptible rice. These results provide valuable insights into the molecular mechanisms of pathogen infection strategies and plant immunity.
Collapse
Affiliation(s)
- Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, P. R. China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Kaihuai Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuanlai Lou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, P. R. China.
| |
Collapse
|
25
|
Gao X, Guo P, Wang Z, Chen C, Ren Z. Transcriptome profiling reveals response genes for downy mildew resistance in cucumber. PLANTA 2021; 253:112. [PMID: 33914134 DOI: 10.1007/s00425-021-03603-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
We discovered a potential defense pathway of cucumber to downy mildew. The signaling that activates the pathways of ROS and lignin accumulation may play an important role in the defense response. Many resistance genes were identified by transcriptome analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive diseases and causes severe yield losses of cucumber. However, the genes and pathways involved in regulating DM resistance were still poorly understood. In our study, we observed that the highly sensitive inbred line 53 (IL53) exhibited more severe disease symptoms than the highly resistant inbred line 51 (IL51) under P. cubensis infection. Furthermore, lignin, limiting the germination and extension of P. cubensis, and H2O2, as a signaling molecule during the resistant process, were both shown to increase, indicating that the signaling that activates these pathways might be responsible for the resistance divergence between IL51 and IL53. Transcriptome analysis, using the resistant and susceptible pools in F2 populations with IL51 and IL53 as parents, showed that a series of differentially expressed genes was involved in multiple functions of defense response: pathogen-associated molecular pattern recognition, signal transduction, reactive oxygen species and lignin accumulation, and transcription regulators. Combining physiological data with transcriptomes, we predicted a potential molecular mechanism of cucumber resistance to DM. Our research provided a foundation for further studies on the mechanism of cucumber resistance to DM.
Collapse
Affiliation(s)
- Xinbin Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Pei Guo
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Zhiyuan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultural University, Ministry of Agriculture, Tai'an, 271018, Shandong, China.
| |
Collapse
|
26
|
Billah M, Li F, Yang Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases ( Verticillium and Fusarium): Progress and Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:759245. [PMID: 34912357 PMCID: PMC8666531 DOI: 10.3389/fpls.2021.759245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
In environmental conditions, crop plants are extremely affected by multiple abiotic stresses including salinity, drought, heat, and cold, as well as several biotic stresses such as pests and pathogens. However, salinity, drought, and wilt diseases (e.g., Fusarium and Verticillium) are considered the most destructive environmental stresses to cotton plants. These cause severe growth interruption and yield loss of cotton. Since cotton crops are central contributors to total worldwide fiber production, and also important for oilseed crops, it is essential to improve stress tolerant cultivars to secure future sustainable crop production under adverse environments. Plants have evolved complex mechanisms to respond and acclimate to adverse stress conditions at both physiological and molecular levels. Recent progresses in molecular genetics have delivered new insights into the regulatory network system of plant genes, which generally includes defense of cell membranes and proteins, signaling cascades and transcriptional control, and ion uptake and transport and their relevant biochemical pathways and signal factors. In this review, we mainly summarize recent progress concerning several resistance-related genes of cotton plants in response to abiotic (salt and drought) and biotic (Fusarium and Verticillium wilt) stresses and classify them according to their molecular functions to better understand the genetic network. Moreover, this review proposes that studies of stress related genes will advance the security of cotton yield and production under a changing climate and that these genes should be incorporated in the development of cotton tolerant to salt, drought, and fungal wilt diseases (Verticillium and Fusarium).
Collapse
Affiliation(s)
- Masum Billah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li,
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Zhaoen Yang,
| |
Collapse
|
27
|
Yin Z, Zhu W, Zhang X, Chen X, Wang W, Lin H, Wang J, Ye W. Molecular characterization, expression and interaction of MAPK, MAPKK and MAPKKK genes in upland cotton. Genomics 2020; 113:1071-1086. [PMID: 33181247 DOI: 10.1016/j.ygeno.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades, consisting of three types of sequentially phosphorylated kinases (MAPKKK, MAPKK, and MAPK), play vital roles in various processes including plant development and stress response. In this study, 52 GhMAPKs, 23 GhMAPKKs, and 166 GhMAPKKKs were identified in upland cotton. Chromosomal locations, gene duplication and structure, motifs, cis-regulatory elements, and protein subcellular localization were further analyzed. With the identified MAPK cascade genes in G. arboretum and G. raimondii, a syntenic diagram of three cotton species was constructed. The interactions of seven GhMAPK cascade genes were investigated. Two complete signaling modules were defined: The GhMEKK24/GhMEKK31-GhMAPKK9-GhMAPK10 and GhMEKK3/GhMEKK24/GhMEKK31-GhMAPKK16-GhMAPK10/GhMAPK11 cascades. Moreover, interaction networks and the interaction pairs were combined with their expression patterns and demonstrated that the network mediated by the MAPK signaling cascade participates in abiotic stress signaling. Our research provides a foundation for studying the molecular mechanism of the MAPK signaling pathway under abiotic stress.
Collapse
Affiliation(s)
- Zujun Yin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China.
| | - Weidong Zhu
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong, PR China
| | - Xiugui Chen
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Shandong, PR China
| | - Huan Lin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China
| | - Junjuan Wang
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China
| | - Wuwei Ye
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Henan, PR China.
| |
Collapse
|
28
|
Liu M, Zhang Q, Wang C, Meng T, Wang L, Chen C, Ren Z. CsWRKY10 mediates defence responses to Botrytis cinerea infection in Cucumis sativus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110640. [PMID: 33180717 DOI: 10.1016/j.plantsci.2020.110640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Cucumber (Cucumis sativus) is one of the most widely cultivated vegetable crops in the world, and its yield is often reduced due to the infection of Botrytis cinerea (B. cinerea), which causes a serious disease. However, few genes involved in the response to B. cinerea have been identified in cucumber. In this study, we identified that CsWRKY10 plays a key role in the cucumber resistance to B. cinerea because that the overexpression of CsWRKY10 significantly increased the susceptibility to B. cinerea in cucumber. After the pathogen infection, the enzyme activities of catalase, superoxide dismutase and peroxidase in transgenic plants were affected, resulting in the decrease in reactive oxygen species (ROS) contents. In addition, the light microscopic images showed that overexpression of CsWRKY10 promoted the spore germination and mycelia elongation of B. cinerea in cucumber. Importantly, after B. cinerea infection, the contents of jasmonic acid (JA) are decreased, and the expression levels of JA- and salicylic acid- related defence genes significantly changed in transgenic plants. In contrast, overexpression of CsWRKY10 enhanced resistance to Corynespora cassiicola in cucumber. Collectively, this study indicated that CsWRKY10 negatively regulates the resistance of cucumber to B. cinerea by reducing the ROS contents and inhibiting the JA-mediated resistance signalling pathway, but strengthens resistance to Corynespora cassiicola.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Qingxia Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Can Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Tianqi Meng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Lina Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
29
|
Xie Y, Ding M, Zhang B, Yang J, Pei T, Ma P, Dong J. Genome-wide characterization and expression profiling of MAPK cascade genes in Salvia miltiorrhiza reveals the function of SmMAPK3 and SmMAPK1 in secondary metabolism. BMC Genomics 2020; 21:630. [PMID: 32928101 PMCID: PMC7488990 DOI: 10.1186/s12864-020-07023-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The contribution of mitogen-activated protein kinase (MAPK) cascades to plant growth and development has been widely studied, but this knowledge has not yet been extended to the medicinal plant Salvia miltiorrhiza, which produces a number of pharmacologically active secondary metabolites. RESULTS In this study, we performed a genome-wide survey and identified six MAPKKK kinases (MAPKKKKs), 83 MAPKK kinases (MAPKKKs), nine MAPK kinases (MAPKKs) and 18 MAPKs in the S. miltiorrhiza genome. Within each class of genes, a small number of subfamilies were recognized. A transcriptional analysis revealed differences in the genes' behaviour with respect to both their site of transcription and their inducibility by elicitors and phytohormones. Two genes were identified as strong candidates for playing roles in phytohormone signalling. A gene-to-metabolite network was constructed based on correlation analysis, highlighting the likely involvement of two of the cascades in the synthesis of two key groups of pharmacologically active secondary metabolites: phenolic acids and tanshinones. CONCLUSION The data provide insight into the functional diversification and conservation of MAPK cascades in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yongfeng Xie
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meiling Ding
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jie Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tianlin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Wang C, Guo H, He X, Zhang S, Wang J, Wang L, Guo D, Guo X. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1421-1433. [PMID: 31794094 PMCID: PMC7206998 DOI: 10.1111/pbi.13307] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
In eukaryotes, MAPK scaffold proteins are crucial for regulating the function of MAPK cascades. However, only a few MAPK scaffold proteins have been reported in plants, and the molecular mechanism through which scaffold proteins regulate the function of the MAPK cascade remains poorly understood. Here, we identified GhMORG1, a GhMKK6-GhMPK4 cascade scaffold protein that positively regulates the resistance of cotton to Fusarium oxysporum. GhMORG1 interacted with GhMKK6 and GhMPK4, and the overexpression of GhMORG1 in cotton protoplasts dramatically increased the activity of the GhMKK6-GhMPK4 cascade. Quantitative phosphoproteomics was used to clarify the mechanism of GhMORG1 in regulating disease resistance, and thirty-two proteins were considered as the putative substrates of the GhMORG1-dependent GhMKK6-GhMPK4 cascade. These putative substrates were involved in multiple disease resistance processes, such as cellular amino acid metabolic processes, calcium ion binding and RNA binding. The kinase assays verified that most of the putative substrates were phosphorylated by the GhMKK6-GhMPK4 cascade. For functional analysis, nine putative substrates were silenced in cotton, respectively. The resistance of cotton to F. oxysporum was decreased in the substrate-silenced cottons. These results suggest that GhMORG1 regulates several different disease resistance processes by facilitating the phosphorylation of GhMKK6-GhMPK4 cascade substrates. Taken together, these findings reveal a new plant MAPK scaffold protein and provide insights into the mechanism of plant resistance to pathogens.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Hongbin Guo
- Statistics DepartmentUniversity of AucklandAucklandNew Zealand
| | - Xiaowen He
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Shuxin Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Jiayu Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Lijun Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Dezheng Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Xingqi Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| |
Collapse
|
31
|
Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.). PLoS One 2020; 15:e0232756. [PMID: 32407323 PMCID: PMC7224490 DOI: 10.1371/journal.pone.0232756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a form of serine/threonine protein kinase that activated by extracellular stimulation acting through the MAPK cascade (MAPKKK-MAPKK-MAPK). The MAPK cascade gene family, an important family of protein kinases, plays a vital role in responding to various stresses and hormone signal transduction processes in plants. In this study, we identified 14 CmMAPKs, 6 CmMAPKKs and 64 CmMAPKKKs in melon genome. Based on structural characteristics and a comparison of phylogenetic relationships of MAPK gene families from Arabidopsis, cucumber and watermelon, CmMAPKs and CmMAPKKs were categorized into 4 groups, and CmMAPKKKs were categorized into 3 groups. Furthermore, chromosome location revealed an unevenly distribution on chromosomes of MAPK cascade genes in melon, respectively. Eventually, qRT-PCR analysis showed that all 14 CmMAPKs had different expression patterns under drought, salt, salicylic acid (SA), methyl jasmonate (MeJA), red light (RL), and Podosphaera xanthii (P. xanthii) treatments. Overall, the expression levels of CmMAPK3 and CmMAPK7 under different treatments were higher than those in control. Our study provides an important basis for future functional verification of MAPK genes in regulating responses to stress and signal substance in melon.
Collapse
|
32
|
Cui L, Yang G, Yan J, Pan Y, Nie X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genomics 2019; 20:750. [PMID: 31623562 PMCID: PMC6796406 DOI: 10.1186/s12864-019-6144-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/26/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascade is a conserved and universal signal transduction module in organisms. Although it has been well characterized in many plants, no systematic analysis has been conducted in barley. RESULTS Here, we identified 20 MAPKs, 6 MAPKKs and 156 MAPKKKs in barley through a genome-wide search against the updated reference genome. Then, phylogenetic relationship, gene structure and conserved protein motifs organization of them were systematically analyzed and results supported the predictions. Gene duplication analysis revealed that segmental and tandem duplication events contributed to the expansion of barley MAPK cascade genes and the duplicated gene pairs were found to undergone strong purifying selection. Expression profiles of them were further investigated in different organs and under diverse abiotic stresses using the available 173 RNA-seq datasets, and then the tissue-specific and stress-responsive candidates were found. Finally, co-expression regulatory network of MAPK cascade genes was constructed by WGCNA tool, resulting in a complicated network composed of a total of 72 branches containing 46 HvMAPK cascade genes and 46 miRNAs. CONCLUSION This study provides the targets for further functional study and also contribute to better understand the MAPK cascade regulatory network in barley and beyond.
Collapse
Affiliation(s)
- Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.,College of Life Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiali Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
An JP, Zhang XW, You CX, Bi SQ, Wang XF, Hao YJ. MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation. THE NEW PHYTOLOGIST 2019; 224:380-395. [PMID: 31225908 DOI: 10.1111/nph.16008] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/12/2019] [Indexed: 05/04/2023]
Abstract
Wounding stress leads to anthocyanin accumulation. However, the underlying molecular mechanism remains elusive. In this study, MdWRKY40 was found to promote wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergo MdBT2-mediated degradation in apple. We found that MdMYB1, a positive regulator of anthocyanin biosynthesis, was essential for the wounding-induced anthocyanin biosynthesis in apple. MdWRKY40 was identified as an MdMYB1-interacting protein, and enhanced the binding of MdMYB1 to its target genes in response to wounding. We found that MdBT2 interacted physically with MdWRKY40 and was involved in its degradation through the 26S proteasome pathway. Our results demonstrate that MdWRKY40 is a key modulator in the wounding-induced anthocyanin biosynthesis, which provides new insights into the regulation of wounding-induced anthocyanin biosynthesis at both the transcriptional and post-translational levels in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Si-Qi Bi
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
34
|
Chakraborty J, Ghosh P, Sen S, Nandi AK, Das S. CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. PLANT MOLECULAR BIOLOGY 2019; 100:411-431. [PMID: 30953279 DOI: 10.1007/s11103-019-00868-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/01/2019] [Indexed: 05/28/2023]
Abstract
Physical interaction and phosphorylation by CaMPK9 protects the degradation of CaWRKY40 that induces resistance response in chickpea to Fusarium wilt disease by modulating the transcription of defense responsive genes. WRKY transcription factors (TFs) are the global regulators of plant defense signaling that modulate immune responses in host plants by regulating transcription of downstream target genes upon challenged by pathogens. However, very little is known about immune responsive role of Cicer arietinum L. (Ca) WRKY TFs particularly. Using two contrasting chickpea genotypes with respect to resistance against Fusarium oxysporum f. sp. ciceri Race1 (Foc1), we demonstrate transcript accumulation of different CaWRKYs under multiple stresses and establish that CaWRKY40 triggers defense. CaWRKY40 overexpressing chickpea mounts resistance to Foc1 by positively modulating the defense related gene expression. EMSA, ChIP assay and real-time PCR analyses suggest CaWRKY40 binds at the promoters and positively regulates transcription of CaDefensin and CaWRKY33. Further studies revealed that mitogen Activated Protein Kinase9 (CaMPK9) phosphorylates CaWRKY40 by directly interacting with its two canonical serine residues. Interestingly, CaMPK9 is unable to interact with CaWRKY40 when the relevant two serine residues were replaced by alanine. Overexpression of serine mutated WRKY40 isoform in chickpea fails to provide resistance against Foc1. Mutated WRKY40Ser.224/225 to AA overexpressing chickpea resumes its ability to confer resistance against Foc1 after application of 26S proteasomal inhibitor MG132, suggests that phosphorylation is essential to protect CaWRKY40 from proteasomal degradation. CaMPK9 silencing also led to susceptibility in chickpea to Foc1. Altogether, our results elucidate positive regulatory roles of CaMPK9 and CaWRKY40 in modulating defense response in chickpea upon Foc1 infection.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Senjuti Sen
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
35
|
Li J, Liu X, Wang Q, Huangfu J, Schuman MC, Lou Y. A Group D MAPK Protects Plants from Autotoxicity by Suppressing Herbivore-Induced Defense Signaling. PLANT PHYSIOLOGY 2019; 179:1386-1401. [PMID: 30602493 PMCID: PMC6446743 DOI: 10.1104/pp.18.01411] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 05/17/2023]
Abstract
The mechanisms by which plants activate and enhance defense responses have been well studied; however, the regulatory mechanisms that allow plants to avoid excessive defense responses are poorly understood. Here, we identified a group D mitogen-activated protein kinase (MAPK) gene from rice (Oryza sativa), OsMAPK20-5, whose expression was rapidly induced by infestation of gravid female adults of a destructive rice pest, brown planthopper (BPH, Nilaparvata lugens), but not by BPH nymphs. Expression silencing of OsMAPK20-5 (irMAPK) increased the accumulation of ethylene and nitric oxide (NO) after gravid female BPH infestation, and thereby increased rice plant resistance to BPH adults and oviposited eggs. However, when exposed to high densities of gravid BPH females, irMAPK plants wilted earlier than wild-type plants, which could be attributed to the hyperaccumulation of ethylene and NO in irMAPK plants. Interestingly, when released into the field, irMAPK plants displayed broad resistance to BPH and white-backed planthopper (Sogatella furcifera), the two most destructive pests of rice, and produced higher yield. Taken together, our study shows that although OsMAPK20-5 can reduce the resistance of rice plants to planthoppers, it also enables rice plants to control excessive defense responses and thereby prevents defense-response-related autotoxicity.
Collapse
Affiliation(s)
- Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoli Liu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Jiayi Huangfu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Department of Geography, University of Zurich, 8057 Zurich, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
36
|
Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:2476. [PMID: 30386319 PMCID: PMC6200020 DOI: 10.3389/fmicb.2018.02476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Sclerotinia sclerotiorum is a challenging agricultural pathogen for management, causing large global economic losses annually. The sclerotia and infection cushions are critical for its long-term survival and successful penetration on a wide spectrum of hosts. The mitogen-activated protein kinase (MAPK) cascades serve as central signaling complexes that are involved in various aspects of sclerotia development and infection. In this study, the putative downstream transcription factor of MAPK pathway, SsSte12, was analyzed in S. sclerotiorum. Silencing SsSte12 in S. sclerotiorum resulted in phenotypes of delayed vegetative growth, reduced size of sclerotia, and fewer appressoria formation. Consequently, the SsSte12 RNAi mutants showed attenuated pathogenicity on the host plants due to the defect compound appressorium. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays demonstrated that the SsSte12 interacts with SsMcm1. However, the SsMcm1 expression is independent of the regulation of SsSte12 as revealed by qRT-PCR analysis in SsSte12 RNAi mutants. Together with high accumulation of SsSte12 transcripts in the early development of S. sclerotiorum, our results demonstrated that SsSte12 function was essential in the vegetative mycelial growth, sclerotia development, appressoria formation and penetration-dependent pathogenicity. Moreover, the SsSte12-SsMcm1 interaction might play a critical role in the regulation of the genes encoding these traits in S. sclerotiorum.
Collapse
Affiliation(s)
- Tingtao Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baodong Yu
- Department of Emergency of Xinmin, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
37
|
Song A, Hu Y, Ding L, Zhang X, Li P, Liu Y, Chen F. Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum. PeerJ 2018; 6:e5037. [PMID: 29942696 PMCID: PMC6014330 DOI: 10.7717/peerj.5037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Background Mitogen-activated protein kinase (MAPK) cascades, an important type of pathway in eukaryotic signaling networks, play a key role in plant defense responses, growth and development. Methods Phylogenetic analysis and conserved motif analysis of the MKK and MPK families in Arabidopsis thaliana, Helianthus annuus and Chrysanthemum morifolium classified MKK genes and MPK genes. qRT-PCR was used for the expression patterns of CmMPK and CmMKK genes, and yeast two-hybrid assay was applied to clear the interaction between CmMPKs and CmMKKs. Results We characterized six MKK genes and 11 MPK genes in chrysanthemum based on transcriptomic sequences and classified these genes into four groups. qRT-PCR analysis demonstrated that CmMKKs and CmMPKs exhibited various expression patterns in different organs of chrysanthemum and in response to abiotic stresses and phytohormone treatments. Furthermore, a yeast two-hybrid assay was applied to analyze the interaction between CmMKKs and CmMPKs and reveal the MAPK cascades in chrysanthemum. Discussion Our data led us to propose that CmMKK4-CmMPK13 and CmMKK2-CmMPK4 may be involved in regulating salt resistance and in the relationship between CmMKK9 and CmMPK6 and temperature stress.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Yueheng Hu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lian Ding
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xue Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Peiling Li
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, Henan, China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs. FRONTIERS IN PLANT SCIENCE 2018; 9:469. [PMID: 29696029 PMCID: PMC5905223 DOI: 10.3389/fpls.2018.00469] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/26/2018] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization, stability or trans-interactions of modified proteins. Plant MAPKs usually localize to the cytosol and/or nucleus, and in some instances they may also translocate from the cytosol to the nucleus. Upon the detection of environmental changes at the cell surface, MAPKs participate in the signal transduction to the nucleus, allowing an adequate transcriptional reprogramming. The identification of plant MAPK substrates largely contributed to a better understanding of the underlying signaling mechanisms. In this review, we highlight the nuclear signaling of plant MAPKs. We discuss the activation, regulation and activity of plant MAPKs, as well as their nuclear re-localization. We also describe and discuss known nuclear substrates of plant MAPKs in the context of biotic stress, abiotic stress and development and consider future research directions in the field of plant MAPKs.
Collapse
Affiliation(s)
- Jean Bigeard
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Heribert Hirt
| |
Collapse
|