1
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Wang S, Chen B, Ni S, Liang Y, Li Z. Efficient generation of recombinant eggplant mottled dwarf virus and expression of foreign proteins in solanaceous hosts. Virology 2024; 591:109980. [PMID: 38215560 DOI: 10.1016/j.virol.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Reverse genetics systems have only been successfully developed for a few plant rhabdoviruses. Additional systems are needed for molecular virology studies of these diverse viruses and development of viral vectors for biotechnological applications. Eggplant mottled dwarf virus (EMDV) is responsible for significant agricultural losses in various crops throughout the Mediterranean region and the Middle East. In this study, we report efficient recovery of infectious EMDV from cloned DNAs and engineering of EMDV-based vectors for the expression of foreign proteins in tobacco, eggplant, pepper, and potato plants. Furthermore, we show that the EMDV-based vectors are capable of simultaneously expressing multiple foreign proteins. The developed EMDV reverse genetics system offers a versatile tool for studying virus pathology and plant-virus interactions and for expressing foreign proteins in a range of solanaceous crops.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
5
|
Chabi-Jesus C, Ramos-González PL, Tassi AD, Rossetto Pereira L, Bastianel M, Lau D, Canale MC, Harakava R, Novelli VM, Kitajima EW, Freitas-Astúa J. Citrus Bright Spot Virus: A New Dichorhavirus, Transmitted by Brevipalpus azores, Causing Citrus Leprosis Disease in Brazil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061371. [PMID: 36987059 PMCID: PMC10053991 DOI: 10.3390/plants12061371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/01/2023]
Abstract
Citrus leprosis (CL) is the main viral disease affecting the Brazilian citriculture. Sweet orange (Citrus sinensis L. Osbeck) trees affected by CL were identified in small orchards in Southern Brazil. Rod-like particles of 40 × 100 nm and electron lucent viroplasm were observed in the nucleus of infected cells in symptomatic tissues. RNA extracts from three plants, which proved negative by RT-PCR for known CL-causing viruses, were analyzed by high throughput sequencing and Sanger sequencing after RT-PCR. The genomes of bi-segmented ss(-)RNA viruses, with ORFs in a typical organization of members of the genus Dichorhavirus, were recovered. These genomes shared 98-99% nt sequence identity among them but <73% with those of known dichorhavirids, a value below the threshold for new species demarcation within that genus. Phylogenetically, the three haplotypes of the new virus called citrus bright spot virus (CiBSV) are clustered with citrus leprosis virus N, which is a dichorhavirus transmitted by Brevipalpus phoenicis sensu stricto. In CiBSV-infected citrus plants, B. papayensis and B. azores were found, but the virus could only be transmitted to Arabidopsis plants by B. azores. The study provides the first evidence of the role of B. azores as a viral vector and supports the assignment of CiBSV to the tentative new species Dichorhavirus australis.
Collapse
Affiliation(s)
- Camila Chabi-Jesus
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (Esalq/USP), Piracicaba 13418-900, São Paulo, Brazil
- Instituto Biológico/IB, São Paulo 04014-002, São Paulo, Brazil
| | | | | | | | - Marinês Bastianel
- Centro de Citricultura Sylvio Moreira/IAC, Cordeirópolis 13490-970, São Paulo, Brazil
| | - Douglas Lau
- Embrapa Trigo, Passo Fundo 99050-970, Rio Grande do Sul, Brazil
| | - Maria Cristina Canale
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina/Epagri, Paulo Lopes 88490-000, Santa Catarina, Brazil
| | | | | | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (Esalq/USP), Piracicaba 13418-900, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Instituto Biológico/IB, São Paulo 04014-002, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil
| |
Collapse
|
6
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
7
|
Wang Y, Wang G, Bai J, Zhang Y, Wang Y, Wen S, Li L, Yang Z, Hong N. A novel Actinidia cytorhabdovirus characterized using genomic and viral protein interaction features. MOLECULAR PLANT PATHOLOGY 2021; 22:1271-1287. [PMID: 34288324 PMCID: PMC8435229 DOI: 10.1111/mpp.13110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.
Collapse
Affiliation(s)
- Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jianyu Bai
- Laboratory of Fruit Trees DiseaseInstitute of Economic ForestryXinjiang Academy of Forestry SciencesUrumqiChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shaohua Wen
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liu Li
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zuokun Yang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
Jackson AO. Reflections on a Career in Plant Virology: A Chip Floating on a Stream. Annu Rev Virol 2021; 8:23-50. [PMID: 34255543 DOI: 10.1146/annurev-virology-091919-105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the time I entered college and for a few years afterward, I had very few concrete goals. Hence, my progress was more a matter of luck than planning and was somewhat analogous to a small wood chip floating down a slow stream, bumping into various objects tossed and turned hither and thither, all the while being surrounded by larger and more appealing chips. I have been extremely lucky to have been associated with numerous helpful and knowledgeable mentors, colleagues, postdocs, students, and coworkers whose advice had major impacts on my life. Therefore, throughout this article, I have attempted to acknowledge central individuals who contributed to my progress in academia and to highlight the positive bumps to my chip on the steam that affected the directions of my career.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
9
|
Wang Z, Chen B, Zhang T, Zhou G, Yang X. Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Front Microbiol 2021; 12:715223. [PMID: 34394065 PMCID: PMC8358444 DOI: 10.3389/fmicb.2021.715223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses 2021; 13:v13071304. [PMID: 34372509 PMCID: PMC8310260 DOI: 10.3390/v13071304] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/06/2023] Open
Abstract
Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.
Collapse
|
11
|
Li Z, Zhao C. Plant negative-stranded RNA virus biology and host interactions revitalized by reverse genetics. Curr Opin Virol 2021; 48:1-9. [PMID: 33774424 DOI: 10.1016/j.coviro.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the biology and pathogenesis of plant negative-stranded RNA viruses (NSVs) has lagged behind those made with positive-stranded RNA and DNA virus counterparts. This tardiness is mainly due to the lack of reverse genetics tools for NSV genome engineering for many years. The eventual establishment and application of recombinant systems with diverse plant NSVs has provided renewed momentum for investigations of these important viral pathogens. In this review, we summarize the recent advances in plant NSV reverse genetics systems, highlighting the general principles and the uniqueness of each system and emphasizing important considerations for strategy designing. We also provide a brief overview of the insights about NSV morphogenesis, movement, and virus-host interactions gained from reverse genetics-enabled studies.
Collapse
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Zhang S, Huang A, Zhou X, Li Z, Dietzgen RG, Zhou C, Cao M. Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus-Plant Coevolution. PHYTOPATHOLOGY 2021; 111:227-236. [PMID: 32648524 DOI: 10.1094/phyto-05-20-0191-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3' leader-N-P-P3-M-L-5' trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the "degraded" type of CiaRV in citrus, in parallel to "undegraded" types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.
Collapse
Affiliation(s)
- Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Aijun Huang
- National Navel Orange Research Center, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Xin Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
13
|
Ma X, Li Z. Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA. Viruses 2020; 12:v12121459. [PMID: 33348798 PMCID: PMC7766655 DOI: 10.3390/v12121459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of recombinant negative-stranded RNA viruses (NSVs) from plasmids involves in vivo reconstitution of biologically active nucleocapsids and faces a unique antisense problem where the negative-sense viral genomic RNAs can hybridize to viral messenger RNAs. To overcome this problem, a positive-sense RNA approach has been devised through expression of viral antigenomic (ag)RNA and core proteins for assembly of antigenomic nucleocapsids. Although this detour strategy works for many NSVs, the process is still inefficient. Using Sonchus yellow net rhabdovirus (SYNV) as a model; here, we develop a negative-sense genomic RNA-based approach that increased rescue efficiency by two orders of magnitude compared to the conventional agRNA approach. The system relied on suppression of double-stranded RNA induced antiviral responses by co-expression of plant viruses-encoded RNA silencing suppressors or animal viruses-encoded double-stranded RNA antagonists. With the improved approach, we were able to recover a highly attenuated SYNV mutant with a deletion in the matrix protein gene which otherwise could not be rescued via the agRNA approach. Reverse genetics analyses of the generated mutant virus provided insights into SYNV virion assembly and morphogenesis. This approach may potentially be applicable to other NSVs of plants or animals.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2387
| |
Collapse
|
14
|
Groves NR, Biel A, Moser M, Mendes T, Amstutz K, Meier I. Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus 2020; 11:330-346. [PMID: 33161800 PMCID: PMC7746247 DOI: 10.1080/19491034.2020.1846836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.
Collapse
Affiliation(s)
- Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tyler Mendes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Katelyn Amstutz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Ma X, Zhang X, Liu H, Li Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. NATURE PLANTS 2020; 6:773-779. [PMID: 32601419 DOI: 10.1038/s41477-020-0704-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Genome-editing technologies using CRISPR-Cas nucleases have revolutionized plant science and hold enormous promise in crop improvement. Conventional transgene-mediated CRISPR-Cas reagent delivery methods may be associated with unanticipated genome changes or damage1,2, with prolonged breeding cycles involving foreign DNA segregation and with regulatory restrictions regarding transgenesis3. Therefore, DNA-free delivery has been developed by transfecting preassembled CRISPR-Cas9 ribonucleoproteins into protoplasts4 or in vitro fertilized zygotes5. However, technical difficulties in regeneration from these wall-less cells make impractical a general adaption of these approaches to most crop species. Alternatively, CRISPR-Cas ribonucleoproteins or RNA transcripts have been biolistically bombarded into immature embryo cells or calli to yield highly specific genome editing, albeit at low frequency6-9. Here we report the engineering of a plant negative-strand RNA virus-based vector for DNA-free in planta delivery of the entire CRISPR-Cas9 cassette to achieve single, multiplex mutagenesis and chromosome deletions at high frequency in a model allotetraploid tobacco host. Over 90% of plants regenerated from virus-infected tissues without selection contained targeted mutations, among which up to 57% carried tetra-allelic, inheritable mutations. The viral vector remained stable even after mechanical transmission, and can readily be eliminated from mutated plants during regeneration or after seed setting. Despite high on-target activities, off-target effects, if any, are minimal. Our study provides a convenient, highly efficient and cost-effective approach for CRISPR-Cas9 gene editing in plants through virus infection.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huimin Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
German TL, Lorenzen MD, Grubbs N, Whitfield AE. New Technologies for Studying Negative-Strand RNA Viruses in Plant and Arthropod Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:382-393. [PMID: 31914364 DOI: 10.1094/mpmi-10-19-0281-fi] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plant viruses in the phylum Negarnaviricota, orders Bunyavirales and Mononegavirales, have common features of single-stranded, negative-sense RNA genomes and replication in the biological vector. Due to the similarities in biology, comparative functional analysis in plant and vector hosts is helpful for understanding host-virus interactions for negative-strand RNA viruses. In this review, we will highlight recent technological advances that are breaking new ground in the study of these recalcitrant virus systems. The development of infectious clones for plant rhabdoviruses and bunyaviruses is enabling unprecedented examination of gene function in plants and these advances are also being transferred to study virus biology in the vector. In addition, genome and transcriptome projects for critical nonmodel arthropods has enabled characterization of insect response to viruses and identification of interacting proteins. Functional analysis of genes using genome editing will provide future pathways for further study of the transmission cycle and new control strategies for these viruses and their vectors.
Collapse
Affiliation(s)
- Thomas L German
- Departments of Entomology and Plant Pathology, University of Wisconsin, Madison, WI, U.S.A
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, U.S.A
| |
Collapse
|
17
|
Identification and characterization of a novel rhabdovirus infecting peach in China. Virus Res 2020; 280:197905. [PMID: 32105763 DOI: 10.1016/j.virusres.2020.197905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
A novel negative-sense, single-stranded (ss) RNA virus was identified in peach trees by high-throughput sequencing, and named peach virus 1 (PeV1). The genome of PeV1 consists of 13,949 nucleotides (nt), and its organization is typical of rhabdoviruses with six open reading frames (ORFs) encoding deduced proteins N-P-P3-M-G-L on the antisense strand. These ORFs are separated by highly conserved intergenic sequences and flanked by complementary 3'-leader and 5'-trailer sequences. PeV1 shared highest complete genome (41.9%), N amino acid (43.6%), G amino acid (41.0%), and L amino acid (42.7%) identities with viruses which belong to the genus Alphanucleorhabdovirus, suggesting it may belong to a new species. This was further supported by phylogenetic analyses using amino acid sequences of N, G, and L proteins, in which this virus is always clustered with alphanucleorhabdoviruses. Collectively, results suggest that PeV1 is a member of a new alphanucleorhabdovirus species. Moreover, bioassays revealed that it could be transmitted through grafting. The findings expand our knowledge of peach-infecting viruses and alphanucleorhabdoviruses.
Collapse
|
18
|
Peng X, Ma X, Lu S, Li Z. A Versatile Plant Rhabdovirus-Based Vector for Gene Silencing, miRNA Expression and Depletion, and Antibody Production. FRONTIERS IN PLANT SCIENCE 2020; 11:627880. [PMID: 33510764 PMCID: PMC7835261 DOI: 10.3389/fpls.2020.627880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Plant virus vectors are ideal tools for delivery of genetic cargo into host cells for functional genomics studies and protein overexpression. Although a vast number of plant virus vectors have been developed for different purposes, the utility of a particular virus vector is generally limited. Here, we report a multipurpose plant rhabdovirus-based vector system suitable for a wide range of applications in Nicotiana benthamiana. We engineered sonchus yellow net rhabdovirus (SYNV)-based gene silencing vectors through expressing a sense, antisense, or double-stranded RNAs of target genes. Robust target gene silencing was also achieved with an SYNV vector expressing a designed artificial microRNA. In addition, ectopic expression of a short tandem target mimic RNA using the SYNV vector led to a significant depletion of the target miR165/166 and caused abnormal leaf development. More importantly, SYNV was able to harbor two expression cassettes that permitted simultaneous RNA silencing and overexpression of large reporter gene. This dual capacity vector also enabled systemic expression of a whole-molecule monoclonal antibody consisting of light and heavy chains. These results highlight the utility of the SYNV vector system in gene function studies and agricultural biotechnology and provide a technical template for developing similar vectors of other economically important plant rhabdoviruses.
Collapse
Affiliation(s)
- Xingxing Peng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuting Lu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- *Correspondence: Zhenghe Li,
| |
Collapse
|
19
|
The Matrix Protein of a Plant Rhabdovirus Mediates Superinfection Exclusion by Inhibiting Viral Transcription. J Virol 2019; 93:JVI.00680-19. [PMID: 31341043 DOI: 10.1128/jvi.00680-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 11/20/2022] Open
Abstract
Superinfection exclusion (SIE) or cross-protection phenomena have been documented for plant viruses for nearly a century and are widespread among taxonomically diverse viruses, but little information is available about SIE of plant negative-strand RNA viruses. Here, we demonstrate that SIE by sonchus yellow net nucleorhabdovirus virus (SYNV) is mediated by the viral matrix (M) protein, a multifunctional protein involved in transcription regulation, virion assembly, and virus budding. We show that fluorescent protein-tagged SYNV variants display mutual exclusion/cross-protection in Nicotiana benthamiana plants. Transient expression of the SYNV M protein, but not other viral proteins, interfered with SYNV local infections. In addition, SYNV M deletion mutants failed to exclude superinfection by wild-type SYNV. An SYNV minireplicon reporter gene expression assay showed that the M protein inhibited viral transcription. However, M protein mutants with weakened nuclear localization signals (NLS) and deficient nuclear interactions with the SYNV nucleocapsid protein were unable to suppress transcription. Moreover, SYNV with M NLS mutations exhibited compromised SIE against wild-type SYNV. From these data, we propose that M protein accumulating in nuclei with primary SYNV infections either coils or prevents uncoiling of nucleocapsids released by the superinfecting SYNV virions and suppresses transcription of superinfecting genomes, thereby preventing superinfection. Our model suggests that the rhabdovirus M protein regulates the transition from replication to virion assembly and renders the infected cells nonpermissive for secondary infections.IMPORTANCE Superinfection exclusion (SIE) is a widespread phenomenon in which an established virus infection prevents reinfection by closely related viruses. Understanding the mechanisms governing SIE will not only advance our basic knowledge of virus infection cycles but may also lead to improved design of antiviral measures. Despite the significance of SIE, our knowledge about viral SIE determinants and their modes of actions remain limited. In this study, we show that sonchus yellow net virus (SYNV) SIE is mediated by the viral matrix (M) protein. During primary infections, accumulation of M protein in infected nuclei results in coiling of genomic nucleocapsids and suppression of viral transcription. Consequently, nucleocapsids released by potential superinfectors are sequestered and are unable to initiate new infections. Our data suggest that SYNV SIE is caused by M protein-mediated transition from replication to virion assembly and that this process prevents secondary infections.
Collapse
|
20
|
Zhou X, Lin W, Sun K, Wang S, Zhou X, Jackson AO, Li Z. Specificity of Plant Rhabdovirus Cell-to-Cell Movement. J Virol 2019; 93:e00296-19. [PMID: 31118256 PMCID: PMC6639277 DOI: 10.1128/jvi.00296-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Positive-stranded RNA virus movement proteins (MPs) generally lack sequence-specific nucleic acid-binding activities and display cross-family movement complementarity with related and unrelated viruses. Negative-stranded RNA plant rhabdoviruses encode MPs with limited structural and functional relatedness with other plant virus counterparts, but the precise mechanisms of intercellular transport are obscure. In this study, we first analyzed the abilities of MPs encoded by five distinct rhabdoviruses to support cell-to-cell movement of two positive-stranded RNA viruses by using trans-complementation assays. Each of the five rhabdovirus MPs complemented the movement of MP-defective mutants of tomato mosaic virus and potato X virus. In contrast, movement of recombinant MP deletion mutants of sonchus yellow net nucleorhabdovirus (SYNV) and tomato yellow mottle-associated cytorhabdovirus (TYMaV) was rescued only by their corresponding MPs, i.e., SYNV sc4 and TYMaV P3. Subcellular fractionation analyses revealed that SYNV sc4 and TYMaV P3 were peripherally associated with cell membranes. A split-ubiquitin membrane yeast two-hybrid assay demonstrated specific interactions of the membrane-associated rhabdovirus MPs only with their cognate nucleoproteins (N) and phosphoproteins (P). More importantly, SYNV sc4-N and sc4-P interactions directed a proportion of the N-P complexes from nuclear sites of replication to punctate loci at the cell periphery that partially colocalized with the plasmodesmata. Our data show that cell-to-cell movement of plant rhabdoviruses is highly specific and suggest that cognate MP-nucleocapsid core protein interactions are required for intra- and intercellular trafficking.IMPORTANCE Local transport of plant rhabdoviruses likely involves the passage of viral nucleocapsids through MP-gated plasmodesmata, but the molecular mechanisms are not fully understood. We have conducted complementation assays with MPs encoded by five distinct rhabdoviruses to assess their movement specificity. Each of the rhabdovirus MPs complemented the movement of MP-defective mutants of two positive-stranded RNA viruses that have different movement strategies. In marked contrast, cell-to-cell movement of two recombinant plant rhabdoviruses was highly specific in requiring their cognate MPs. We have shown that these rhabdovirus MPs are localized to the cell periphery and associate with cellular membranes, and that they interact only with their cognate nucleocapsid core proteins. These interactions are able to redirect viral nucleocapsid core proteins from their sites of replication to the cell periphery. Our study provides a model for the specific inter- and intracellular trafficking of plant rhabdoviruses that may be applicable to other negative-stranded RNA viruses.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenye Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. FRONTIERS IN PLANT SCIENCE 2019; 10:803. [PMID: 31275344 PMCID: PMC6594412 DOI: 10.3389/fpls.2019.00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 05/03/2023]
Abstract
Plant molecular pharming has emerged as a reliable platform for recombinant protein expression providing a safe and low-cost alternative to bacterial and mammalian cells-based systems. Simultaneously, plant viruses have evolved from pathogens to molecular tools for recombinant protein expression, chimaeric viral vaccine production, and lately, as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and agroinfection, the development of non-enveloped viruses for various biotechnological applications, and the on-going research on enveloped plant viruses.
Collapse
|
22
|
Whitfield AE, Huot OB, Martin KM, Kondo H, Dietzgen RG. Plant rhabdoviruses-their origins and vector interactions. Curr Opin Virol 2018; 33:198-207. [PMID: 30500682 DOI: 10.1016/j.coviro.2018.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Classical plant rhabdoviruses infect monocot and dicot plants, have unsegmented negative-sense RNA genomes and have been taxonomically classified in the genera Cytorhabdovirus and Nucleorhabdovirus. These viruses replicate in their hemipteran vectors and are transmitted in a circulative-propagative mode and virus infection persists for the life of the insect. Based on the discovery of numerous novel rhabdoviruses in arthropods during metagenomic studies and extensive phylogenetic analyses of the family Rhabdoviridae, it is hypothesized that plant-infecting rhabdoviruses are derived from insect viruses. Analyses of viral gene function in plants and insects is beginning to reveal conserved and unique biology for these plant viruses in the two diverse hosts. New tools for insect molecular biology and infectious clones for plant rhabdoviruses are increasing our understanding of the lifestyles of these viruses.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.
| | - Ordom Brian Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Hideki Kondo
- Institute of Plant Science and Resource, Okayama University, Kurashiki, 710-0046, Japan
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
23
|
Jackson AO, Dietzgen RG, Goodin MM, Li Z. Development of Model Systems for Plant Rhabdovirus Research. Adv Virus Res 2018; 102:23-57. [PMID: 30266175 DOI: 10.1016/bs.aivir.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter reviews the discoveries and initial characterizations (1930-1990) of three plant rhabdoviruses, sonchus yellow net virus, potato yellow dwarf virus, and lettuce necrotic yellows virus, that have become model systems for research on this group of enveloped negative-strand RNA plant viruses. We have used our personal perspectives to review the early historical studies of these viruses, the important technologies and tools, such as density gradient centrifugation, that were developed during the research, and to highlight the eminent scientists involved in these discoveries. Early studies on sites of virus replication, virion structure, physicochemical composition, and the use of protoplasts and vector insect cell culture for virus research are discussed, and differences between the nuclear and cytoplasmic lifestyles of plant rhabdoviruses are contrasted. Finally, we briefly summarize the genome organization and more recent developments culminating in the development of a reverse genetics system for plant negative-strand RNA viruses.
Collapse
Affiliation(s)
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | | | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|