1
|
Kumakura N, Singkaravanit-Ogawa S, Gan P, Tsushima A, Ishihama N, Watanabe S, Seo M, Iwasaki S, Narusaka M, Narusaka Y, Takano Y, Shirasu K. Guanosine-specific single-stranded ribonuclease effectors of a phytopathogenic fungus potentiate host immune responses. THE NEW PHYTOLOGIST 2024; 242:170-191. [PMID: 38348532 DOI: 10.1111/nph.19582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/06/2024] [Indexed: 03/08/2024]
Abstract
Plants activate immunity upon recognition of pathogen-associated molecular patterns. Although phytopathogens have evolved a set of effector proteins to counteract plant immunity, some effectors are perceived by hosts and induce immune responses. Here, we show that two secreted ribonuclease effectors, SRN1 and SRN2, encoded in a phytopathogenic fungus, Colletotrichum orbiculare, induce cell death in a signal peptide- and catalytic residue-dependent manner, when transiently expressed in Nicotiana benthamiana. The pervasive presence of SRN genes across Colletotrichum species suggested the conserved roles. Using a transient gene expression system in cucumber (Cucumis sativus), an original host of C. orbiculare, we show that SRN1 and SRN2 potentiate host pattern-triggered immunity responses. Consistent with this, C. orbiculare SRN1 and SRN2 deletion mutants exhibited increased virulence on the host. In vitro analysis revealed that SRN1 specifically cleaves single-stranded RNAs at guanosine, leaving a 3'-end phosphate. Importantly, the potentiation of C. sativus responses by SRN1 and SRN2, present in the apoplast, depends on ribonuclease catalytic residues. We propose that the pathogen-derived apoplastic guanosine-specific single-stranded endoribonucleases lead to immunity potentiation in plants.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuaki Ishihama
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nakagami, Okinawa, 903-0213, Japan
| | - Shintaro Iwasaki
- RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Kaga, Okayama, 716-1241, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery J, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. MOLECULAR PLANT PATHOLOGY 2023; 24:1451-1464. [PMID: 37522511 PMCID: PMC10576178 DOI: 10.1111/mpp.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.
Collapse
Affiliation(s)
- Katsuma Yonehara
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | | | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Yamada K, Yamamoto T, Uwasa K, Osakabe K, Takano Y. The establishment of multiple knockout mutants of Colletotrichum orbiculare by CRISPR-Cas9 and Cre-loxP systems. Fungal Genet Biol 2023; 165:103777. [PMID: 36669556 DOI: 10.1016/j.fgb.2023.103777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Colletotrichum orbiculare is employed as a model fungus to analyze molecular aspects of plant-fungus interactions. Although gene disruption via homologous recombination (HR) was established for C. orbiculare, this approach is laborious due to its low efficiency. Here we developed methods to generate multiple knockout mutants of C. orbiculare efficiently. We first found that CRISPR-Cas9 system massively promoted gene-targeting efficiency. By transiently introducing a CRISPR-Cas9 vector, more than 90% of obtained transformants were knockout mutants. Furthermore, we optimized a self-excision Cre-loxP marker recycling system for C. orbiculare because a limited availability of desired selective markers hampers sequential gene disruption. In this system, the integrated selective marker is removable from the genome via Cre recombinase driven by a xylose-inducible promoter, enabling the reuse of the same selective marker for the next transformation. Using our CRISPR-Cas9 and Cre-loxP systems, we attempted to identify functional sugar transporters involved in fungal virulence. Multiple disruptions of putative quinate transporter genes restricted fungal growth on media containing quinate as a sole carbon source, confirming their functionality as quinate transporters. However, our analyses showed that quinate acquisition was dispensable for infection to host plants. In addition, we successfully built mutations of 17 cellobiose transporter genes in a strain. From the data of knockout mutants that we established in this study, we inferred that repetitive rounds of gene disruption using CRISPR-Cas9 and Cre-loxP systems do not cause adverse effects on fungal virulence and growth. Therefore, these systems will be powerful tools to perform a systematic loss-of-function approach for C. orbiculare.
Collapse
Affiliation(s)
- Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan; JST, PRESTO, Kawaguchi, Japan.
| | - Toya Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Kanon Uwasa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | |
Collapse
|
4
|
Chen M, Kumakura N, Saito H, Muller R, Nishimoto M, Mito M, Gan P, Ingolia NT, Shirasu K, Ito T, Shichino Y, Iwasaki S. A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants. eLife 2023; 12:81302. [PMID: 36852480 PMCID: PMC9977294 DOI: 10.7554/elife.81302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Naoyoshi Kumakura
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Hironori Saito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Ryan Muller
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Pamela Gan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of Science, The University of TokyoTokyoJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
5
|
Zhang T, Sun Y, Ma Z, Zhang J, Lv B, Li C. Developing iterative and quantified transgenic manipulations of non-conventional filamentous fungus Talaromyces pinophilus Li-93. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Tsushima A, Narusaka M, Gan P, Kumakura N, Hiroyama R, Kato N, Takahashi S, Takano Y, Narusaka Y, Shirasu K. The Conserved Colletotrichum spp. Effector Candidate CEC3 Induces Nuclear Expansion and Cell Death in Plants. Front Microbiol 2021; 12:682155. [PMID: 34539598 PMCID: PMC8446390 DOI: 10.3389/fmicb.2021.682155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023] Open
Abstract
Plant pathogens secrete proteins, known as effectors, that promote infection by manipulating host cells. Members of the phytopathogenic fungal genus Colletotrichum collectively have a broad host range and generally adopt a hemibiotrophic lifestyle that includes an initial biotrophic phase and a later necrotrophic phase. We hypothesized that Colletotrichum fungi use a set of conserved effectors during infection to support the two phases of their hemibiotrophic lifestyle. This study aimed to examine this hypothesis by identifying and characterizing conserved effectors among Colletotrichum fungi. Comparative genomic analyses using genomes of ascomycete fungi with different lifestyles identified seven effector candidates that are conserved across the genus Colletotrichum. Transient expression assays showed that one of these putative conserved effectors, CEC3, induces nuclear expansion and cell death in Nicotiana benthamiana, suggesting that CEC3 is involved in promoting host cell death during infection. Nuclear expansion and cell death induction were commonly observed in CEC3 homologs from four different Colletotrichum species that vary in host specificity. Thus, CEC3 proteins could represent a novel class of core effectors with functional conservation in the genus Colletotrichum.
Collapse
Affiliation(s)
- Ayako Tsushima
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Kaga-gun, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Ryoko Hiroyama
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Naoki Kato
- Center for Sustainable Resource Science, RIKEN, Wako, Japan
| | | | | | | | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
7
|
Sun R, Xu H, Feng Y, Hou X, Zhu T, Che Q, Pfeifer B, Zhang G, Li D. An efficient marker recycling system for sequential gene deletion in a deep sea-derived fungus Acremonium sp. HDN16-126. Synth Syst Biotechnol 2021; 6:127-133. [PMID: 34141909 PMCID: PMC8187431 DOI: 10.1016/j.synbio.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acremonium species are prolific producers of therapeutic molecules which include the widely used beta-lactam antibiotic, cephalosporin. In light of their significant medical value, an efficient gene disruption method is required for the physiological and biochemical studies on this genus of fungi. However, the number of selection markers that can be used for gene targeting is limited, which constrain the genetic analysis of multiple functional genes. In this study, we established a uridine auxotrophy based marker recycling system which achieves scarless gene deletion, and allows the use of the same selection marker in successive transformations in a deep sea-derived fungus Acremonium sp. HDN16-126. We identified one homologue of Acremonium chrysogenum pyrG (also as a homologous gene of the yeast URA3) from HDN16-126, designated as pyrG-A1, which can be used as a selection marker on uridine free medium. We then removed pyrG-A1 from HDN16-126 genome via homologous recombination (HR) on MM medium with 5-fluoroortic acid (5-FOA), a chemical that can be converted into a toxin of 5-flurouracil by pyrG-A1 activity, thus generating the HDN16-126-△pyrG mutant strain which showed auxotrophy for uridine but insensitivity to 5-FOA and enabled the use of exogenous pyrG gene as both positive and negative selection marker to achieve the scarless deletion of target DNA fragments. We further applied this marker recycling system to successfully disrupt two target genes pepL (encodes a putative 2OG-Fe (II) dioxygenase) and pepM (encodes a putative aldolase) identified from HDN16-126 genome, which are proposed to be functional genes related to 2-aminoisobutyric acid metabolism in fungi. This work is the first application of uridine auxotrophy based scarless gene deletion method in Acremonium species and shows promising potential in assisting sequential genetic analysis of filamentous fungi.
Collapse
Affiliation(s)
- Ruonan Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hengyi Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yanyan Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xuewen Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Blaine Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
8
|
Tsushima A, Gan P, Shirasu K. Method for Assessing Virulence of Colletotrichum higginsianum on Arabidopsis thaliana Leaves Using Automated Lesion Area Detection and Measurement. Bio Protoc 2019; 9:e3434. [PMID: 33654930 DOI: 10.21769/bioprotoc.3434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/02/2022] Open
Abstract
The plant pathogenic fungus, Colletotrichum higginsianum is widely used to understand infection mechanisms, as it infects the model plant Arabidopsis thaliana. To determine the virulence of C. higginsianum, several methods have been developed, such as disease reaction scoring, lesion measurement, entry rate assays, and relative fungal biomass assays using real-time quantitative PCR. Although many studies have taken advantage of these methods, they have shortcomings in terms of objectivity, time, or cost. Here, we show a lesion area detection method applying ImageJ color thresholds to images of A. thaliana leaves infected by C. higginsianum. This method can automatically detect multiple lesions in a short time without the requirement for special equipment and measures lesion areas in a standardized way. This high throughput technique will aid better understanding of plant immunity and pathogenicity and contribute to reproducibility of assays.
Collapse
Affiliation(s)
- Ayako Tsushima
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
9
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
10
|
Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6041-6059. [DOI: 10.1007/s00253-019-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/02/2023]
|