1
|
Yi H, Shi H, Mao W, Yin J, Ma Y, Xu L, Jing L, He M, Zhu X, Lu X, Xiong Q, Tang Y, Hou Q, Song L, Wang L, Li W, Yu H, Chen X, Li J, Wang J. E3 ubiquitin ligase IPI1 controls rice immunity and flowering via both E3 ligase-dependent and -independent pathways. Dev Cell 2024; 59:2719-2730.e4. [PMID: 39025062 DOI: 10.1016/j.devcel.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Immunity and flowering are energy-consuming processes. However, the mechanism underlying the balance between immunity and flowering remains to be elucidated. Here, we report that the E3 ligase ideal plant architecture 1 interactor 1 (IPI1) controls rice immunity and flowering via two different pathways, one dependent on and another independent of its E3 ligase activity. We found that IPI1, a RING-finger E3 ligase, interacts with another E3 ligase, AvrPiz-t-interacting protein 6 (APIP6), and protects APIP6 from degradation by preventing APIP6's self-ubiquitination. Stabilization of APIP6 by IPI1 requires no IPI1 E3 ligase activity and leads to degradation of APIP6 substrates via the ubiquitin-proteasome system (UPS). Meanwhile, IPI1 directly ubiquitinates OsELF3-1 and OsELF3-2, two homologs of EARLY FLOWERING3 (ELF3), targeting them for degradation via the 26S proteasome. IPI1 knockout plants display early flowering but compromised resistance to rice blast. Thus, IPI1 balances rice immunity and flowering via both E3 ligase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yanyan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Li Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Linjie Jing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Yazhou Bay Seed Laboratory, Sanya 572025, Hainan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
2
|
Liu X, Hu X, Tu Z, Sun Z, Qin P, Liu Y, Chen X, Li Z, Jiang N, Yang Y. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1478159. [PMID: 39445147 PMCID: PMC11496149 DOI: 10.3389/fpls.2024.1478159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Zhouyi Tu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Zhenbiao Sun
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yikang Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Xinwei Chen
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Lahfa M, Barthe P, de Guillen K, Cesari S, Raji M, Kroj T, Le Naour—Vernet M, Hoh F, Gladieux P, Roumestand C, Gracy J, Declerck N, Padilla A. The structural landscape and diversity of Pyricularia oryzae MAX effectors revisited. PLoS Pathog 2024; 20:e1012176. [PMID: 38709846 PMCID: PMC11132498 DOI: 10.1371/journal.ppat.1012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.
Collapse
Affiliation(s)
- Mounia Lahfa
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Karine de Guillen
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Mouna Raji
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Marie Le Naour—Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - François Hoh
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Jérôme Gracy
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Nathalie Declerck
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| |
Collapse
|
4
|
Li GB, Liu J, He JX, Li GM, Zhao YD, Liu XL, Hu XH, Zhang X, Wu JL, Shen S, Liu XX, Zhu Y, He F, Gao H, Wang H, Zhao JH, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, He M, Chen X, Wang J, Li W, Wu XJ, Ning Y, Sun W, Xu ZJ, Wang WM, Fan J. Rice false smut virulence protein subverts host chitin perception and signaling at lemma and palea for floral infection. THE PLANT CELL 2024; 36:2000-2020. [PMID: 38299379 PMCID: PMC11062437 DOI: 10.1093/plcell/koae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Gao-Meng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Dan Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621023, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Han Gao
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Yazhouwan National Laboratory, Sanya 572024, China
| |
Collapse
|
5
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Sharma S, Prasad A, Prasad M. Ubiquitination from the perspective of plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4367-4376. [PMID: 37226440 DOI: 10.1093/jxb/erad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The constant battle of survival between pathogens and host plants has played a crucial role in shaping the course of their co-evolution. However, the major determinants of the outcome of this ongoing arms race are the effectors secreted by pathogens into host cells. These effectors perturb the defense responses of plants to promote successful infection. In recent years, extensive research in the area of effector biology has reported an increase in the repertoire of pathogenic effectors that mimic or target the conserved ubiquitin-proteasome pathway. The role of the ubiquitin-mediated degradation pathway is well known to be indispensable for various aspects of a plant's life, and thus targeting or mimicking it seems to be a smart strategy adopted by pathogens. Therefore, this review summarizes recent findings on how some pathogenic effectors mimic or act as one of the components of the ubiquitin-proteasome machinery while others directly target the plant's ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Bakhat N, Vielba-Fernández A, Padilla-Roji I, Martínez-Cruz J, Polonio Á, Fernández-Ortuño D, Pérez-García A. Suppression of Chitin-Triggered Immunity by Plant Fungal Pathogens: A Case Study of the Cucurbit Powdery Mildew Fungus Podosphaera xanthii. J Fungi (Basel) 2023; 9:771. [PMID: 37504759 PMCID: PMC10381495 DOI: 10.3390/jof9070771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Fungal pathogens are significant plant-destroying microorganisms that present an increasing threat to the world's crop production. Chitin is a crucial component of fungal cell walls and a conserved MAMP (microbe-associated molecular pattern) that can be recognized by specific plant receptors, activating chitin-triggered immunity. The molecular mechanisms underlying the perception of chitin by specific receptors are well known in plants such as rice and Arabidopsis thaliana and are believed to function similarly in many other plants. To become a plant pathogen, fungi have to suppress the activation of chitin-triggered immunity. Therefore, fungal pathogens have evolved various strategies, such as prevention of chitin digestion or interference with plant chitin receptors or chitin signaling, which involve the secretion of fungal proteins in most cases. Since chitin immunity is a very effective defensive response, these fungal mechanisms are believed to work in close coordination. In this review, we first provide an overview of the current understanding of chitin-triggered immune signaling and the fungal proteins developed for its suppression. Second, as an example, we discuss the mechanisms operating in fungal biotrophs such as powdery mildew fungi, particularly in the model species Podosphaera xanthii, the main causal agent of powdery mildew in cucurbits. The key role of fungal effector proteins involved in the modification, degradation, or sequestration of immunogenic chitin oligomers is discussed in the context of fungal pathogenesis and the promotion of powdery mildew disease. Finally, the use of this fundamental knowledge for the development of intervention strategies against powdery mildew fungi is also discussed.
Collapse
Affiliation(s)
- Nisrine Bakhat
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Alejandra Vielba-Fernández
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Jesús Martínez-Cruz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Álvaro Polonio
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Dolores Fernández-Ortuño
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Malaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Malaga, Spain
| |
Collapse
|
8
|
Yang Y, Shi L, Xu X, Wen J, Xie T, Li H, Li X, Chen M, Dou X, Yuan C, Song H, Xie B, Tao Y. Spermidine Synthase and Saccharopine Reductase Have Co-Expression Patterns Both in Basidiomycetes with Fusion Form and Ascomycetes with Separate Form. J Fungi (Basel) 2023; 9:jof9030352. [PMID: 36983520 PMCID: PMC10051792 DOI: 10.3390/jof9030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Gene fusion is a process through which two or more distinct genes are fused into a single chimeric gene. Unlike most harmful fusion genes in cancer cells, in this study, we first found that spermidine synthetase- (SPDS, catalyst of spermidine biosynthesis) and saccharopine reductase- (SR, catalyst of the penultimate step of lysine biosynthesis) encoding genes form a natural chimeric gene, FfSpdsSr, in Flammulina filiformis. Through the cloning of full-length ORFs in different strains and the analysis of alternative splicing in developmental stages, FfSpdsSr has only one copy and unique transcript encoding chimeric SPDS-SR in F. filiformis. By an orthologous gene search of SpdsSr in more than 80 fungi, we found that the chimeric SpdsSr exists in basidiomycetes, while the two separate Spds and Sr independently exist in ascomycetes, chytridiomycetes, and oomycetes. Further, the transcript level of FfSpdsSr was investigated in different developmental stages and under some common environmental factors and stresses by RT-qPCR. The results showed that FfSpdsSr mainly up-regulated in the elongation stage and pileus development of F. filiformis, as well as under blue light, high temperature, H2O2, and MeJA treatments. Moreover, a total of 15 sets of RNA-Seq data, including 218 samples of Neurospora crassa, were downloaded from the GEO database and used to analyze the expression correlation of NcSpds and NcSr. The results showed that the separate NcSpds and NcSr shared highly similar co-expression patterns in the samples with different strains and different nutritional and environmental condition treatments. The chimeric SpdsSr in basidiomycetes and the co-expression pattern of the Spds and Sr in N. crassa indicate the special link of spermidine and lysine in fungi, which may play an important role in the growth and development of fruiting body and in response to the multiple environmental factors and abiotic stresses.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyue Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyi Dou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengjin Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanbing Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
9
|
Li GB, He JX, Wu JL, Wang H, Zhang X, Liu J, Hu XH, Zhu Y, Shen S, Bai YF, Yao ZL, Liu XX, Zhao JH, Li DQ, Li Y, Huang F, Huang YY, Zhao ZX, Zhang JW, Zhou SX, Ji YP, Pu M, Qin P, Li S, Chen X, Wang J, He M, Li W, Wu XJ, Xu ZJ, Wang WM, Fan J. Overproduction of OsRACK1A, an effector-targeted scaffold protein promoting OsRBOHB-mediated ROS production, confers rice floral resistance to false smut disease without yield penalty. MOLECULAR PLANT 2022; 15:1790-1806. [PMID: 36245122 DOI: 10.1016/j.molp.2022.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.
Collapse
Affiliation(s)
- Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Xue He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Long Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuai Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Fei Bai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zong-Lin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian-Jun Wu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng-Jun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Ustilaginoidea virens Nuclear Effector SCRE4 Suppresses Rice Immunity via Inhibiting Expression of a Positive Immune Regulator OsARF17. Int J Mol Sci 2022; 23:ijms231810527. [PMID: 36142440 PMCID: PMC9501289 DOI: 10.3390/ijms231810527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Rice false smut caused by the biotrophic fungal pathogen Ustilaginoidea virens has become one of the most important diseases in rice. The large effector repertory in U. virens plays a crucial role in virulence. However, current knowledge of molecular mechanisms how U. virens effectors target rice immune signaling to promote infection is very limited. In this study, we identified and characterized an essential virulence effector, SCRE4 (Secreted Cysteine-Rich Effector 4), in U. virens. SCRE4 was confirmed as a secreted nuclear effector through yeast secretion, translocation assays and protein subcellular localization, as well as up-regulation during infection. The SCRE4 gene deletion attenuated the virulence of U. virens to rice. Consistently, ectopic expression of SCRE4 in rice inhibited chitin-triggered immunity and enhanced susceptibility to false smut, substantiating that SCRE4 is an essential virulence factor. Furthermore, SCRE4 transcriptionally suppressed the expression of OsARF17, an auxin response factor in rice, which positively regulates rice immune responses and resistance against U. virens. Additionally, the immunosuppressive capacity of SCRE4 depended on its nuclear localization. Therefore, we uncovered a virulence strategy in U. virens that transcriptionally suppresses the expression of the immune positive modulator OsARF17 through nucleus-localized effector SCRE4 to facilitate infection.
Collapse
|
11
|
Yu M, Zhou Z, Liu X, Yin D, Li D, Zhao X, Li X, Li S, Chen R, Lu L, Yang D, Tang D, Zhu L. The OsSPK1-OsRac1-RAI1 defense signaling pathway is shared by two distantly related NLR proteins in rice blast resistance. PLANT PHYSIOLOGY 2021; 187:2852-2864. [PMID: 34597396 PMCID: PMC8644225 DOI: 10.1093/plphys/kiab445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/23/2021] [Indexed: 06/09/2023]
Abstract
Resistance (R) proteins are important components of plant innate immunity. Most known R proteins are nucleotide-binding site leucine-rich repeat (NLR) proteins. Although a number of signaling components downstream of NLRs have been identified, we lack a general understanding of the signaling pathways. Here, we used the interaction between rice (Oryza sativa) and Magnaporthe oryzae to study signaling of rice NLRs in response to blast infection. We found that in blast resistance mediated by the NLR PIRICULARIA ORYZAE RESISTANCE IN DIGU 3 (PID3), the guanine nucleotide exchange factor OsSPK1 works downstream of PID3. OsSPK1 activates the small GTPase OsRac1, which in turn transduces the signal to the transcription factor RAC IMMUNITY1 (RAI1). Further investigation revealed that the three signaling components also play important roles in disease resistance mediated by the distantly related NLR protein Pi9, suggesting that the OsSPK1-OsRac1-RAI1 signaling pathway could be conserved across rice NLR-induced blast resistance. In addition, we observed changes in RAI1 levels during blast infection, which led to identification of OsRPT2a, a subunit of the 19S regulatory particle of the 26S proteasome. OsRPT2a seemed to be responsible for RAI1 turnover in a 26S proteasome-dependent manner. Collectively, our results suggest a defense signaling route that might be common to NLR proteins in response to blast infection.
Collapse
Affiliation(s)
- Minxiang Yu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350019, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dewei Yang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350019, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
13
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
14
|
Li GB, Fan J, Wu JL, He JX, Liu J, Shen S, Gishkori ZGN, Hu XH, Zhu Y, Zhou SX, Ji YP, Pu M, Zhao JH, Zhao ZX, Wang H, Zhang JW, Huang YY, Li Y, Huang F, Wang WM. The Flower-Infecting Fungus Ustilaginoidea virens Subverts Plant Immunity by Secreting a Chitin-Binding Protein. FRONTIERS IN PLANT SCIENCE 2021; 12:733245. [PMID: 34421978 PMCID: PMC8377610 DOI: 10.3389/fpls.2021.733245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Ustilaginoidea virens is a biotrophic fungal pathogen specifically colonizing rice floral organ and causes false smut disease of rice. This disease has emerged as a serious problem that hinders the application of high-yield rice cultivars, by reducing grain yield and quality as well as introducing mycotoxins. However, the pathogenic mechanisms of U. virens are still enigmatic. Here we demonstrate that U. virens employs a secreted protein UvCBP1 to manipulate plant immunity. In planta expression of UvCBP1 led to compromised chitin-induced defense responses in Arabidopsis and rice, including burst of reactive oxygen species (ROS), callose deposition, and expression of defense-related genes. In vitro-purified UvCBP1 protein competes with rice chitin receptor OsCEBiP to bind to free chitin, thus impairing chitin-triggered rice immunity. Moreover, UvCBP1 could significantly promote infection of U. virens in rice flowers. Our results uncover a mechanism of a floral fungus suppressing plant immunity and pinpoint a universal role of chitin-battlefield during plant-fungi interactions.
Collapse
|
15
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Tian D, Chen Z, Lin Y, Chen Z, Bui KT, Wang Z, Wang F. Weighted Gene Co-Expression Network Coupled with a Critical-Time-Point Analysis during Pathogenesis for Predicting the Molecular Mechanism Underlying Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:81. [PMID: 33306159 PMCID: PMC7732884 DOI: 10.1186/s12284-020-00439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice blast, caused by the ascomycete fungus M. oryzae, is one of the most important diseases of rice. Although many blast resistance (R) genes have been identified and deployed in rice varieties, the molecular mechanisms responsible for the R gene-mediated defense responses are yet not fully understood. RESULTS In this study, we used comparative transcriptomic analysis to explore the molecular mechanism involved in Piz-t-mediated resistance in a transgenic line containing Piz-t (NPB-Piz-t) compared to Nipponbare (NPB). Clustering and principal component analysis (PCA) revealed that the time-point at 24-h post inoculation (hpi) was the most important factor distinguishing the four time-points, which consisted of four genes of mitogen-activated protein kinases (MAPKs) signaling pathway, one gene related to WRKY DNA-binding domain containing protein, five pathogenesis-related protein (OsPR1s) genes, and three genes of R proteins involving in the most significant protein-protein interaction (PPI) pathway. Using weighted gene co-expression network analysis (WGCNA) to investigate RNA-seq data across 0, 24, 48, and 72 hpi, nine modules with similar patterns expression pattern (SEP) and three modules with differential expression pattern (DEP) between NPB-Piz-t and NPB across 0, 24, 48, and 72 hpi with KJ201 (referred to as Piz-t-KJ201 and NPB-KJ201) were identified. Among these the most representative SEP green-yellow module is associated with photosynthesis, and DEP pink module comprised of two specific expressed nucleotide-binding domain and leucine-rich repeat (NLR) genes of LOC_Os06g17900 and LOC_Os06g17920 of Pi2/9 homologous, three NLR genes of LOC_Os11g11810, LOC_Os11g11770, and LOC_Os11g11920 which are putatively associated with important agronomic traits, and a B3 DNA binding domain containing protein related genes (LOC_Os10g39190). Knockout of LOC_Os10g39190 via CRISPR-Cas9 resulted in plant death at the seedling stage. CONCLUSIONS The research suggested that Piz-t and multiple NLR network might play important roles in the regulation of the resistance response in the Piz-t-KJ201 interaction system. The identified genes provide an NLR repository to study the rice-M. oryzae interaction system and facilitate the breeding of blast-resistant cultivars in the future.
Collapse
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Zaijie Chen
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Khuynh The Bui
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Feng Wang
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| |
Collapse
|
17
|
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and Functions of ROP GTPases in Plant-Microbe Interactions. Cells 2020; 9:E2016. [PMID: 32887298 PMCID: PMC7565977 DOI: 10.3390/cells9092016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.
Collapse
Affiliation(s)
| | | | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany; (S.E.); (A.T.)
| |
Collapse
|
18
|
Gong BQ, Wang FZ, Li JF. Hide-and-Seek: Chitin-Triggered Plant Immunity and Fungal Counterstrategies. TRENDS IN PLANT SCIENCE 2020; 25:805-816. [PMID: 32673581 DOI: 10.1016/j.tplants.2020.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 05/05/2023]
Abstract
Fungal pathogens are major destructive microorganisms for land plants and pose growing challenges to global crop production. Chitin is a vital building block for fungal cell walls and also a broadly effective elicitor of plant immunity. Here we review the rapid progress in understanding chitin perception and signaling in plants and highlight similarities and differences of these processes between arabidopsis and rice. We also outline moonlight functions of CERK1, an indispensable chitin coreceptor conserved across the plant kingdom, which imply potential crosstalk between chitin signaling and symbiotic or biotic/abiotic stress signaling in plants via CERK1. Moreover, we summarize current knowledge about fungal counterstrategies for subverting chitin-triggered plant immunity and propose open questions and future directions in this field.
Collapse
Affiliation(s)
- Ben-Qiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|