1
|
Xu J, Wang M, Ren Y, Luo W, Zhang L, Liu S, Hu P. A newly identified photosystem II Subunit P gene TaPsbP4A-1 in Triticeae species negatively regulates wheat powdery mildew resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1452281. [PMID: 39582632 PMCID: PMC11581894 DOI: 10.3389/fpls.2024.1452281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024]
Abstract
The photosystem II (PSII) Subunit P (PsbP) protein is a component of its oxygen-evolving complex, which can oxidize water to produce oxygen using light energy and is critical to the core components and stability of PSII. Using the whole-genome information, the PsbP genes of 10 plant species were comprehensively identified. The expression patterns of wheat PsbPs under Blumeria graminis f. sp. tritici (Bgt) infection were assessed using qRT-PCR, and the functions of TaPsbPs in wheat powdery mildew resistance were studied using barley stripe mosaic virus-induced gene silencing. In total, 122 PsbP genes were divided into 8 classes with similar gene structures. No tandem repeat events were identified in wheat PsbP, suggesting that the PsbP genes in common wheat were donated by its diploid progenitor species. The expression levels of TaPsbP2A-1, TaPsbP3A-1, TaPsbP4A-1, TaPsbP4A-2, and TaPsbP7A-2 were induced by Bgt. The silencing of TaPsbP4A-1 increased the resistance of common wheat 'Bainong AK58' to Bgt. This study provides valuable information for functional and evolutionary research on the PsbP gene family.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengfei Wang
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueming Ren
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Wanglong Luo
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Lu Zhang
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Ping Hu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
2
|
Prakash V, Sharma V, Devendran R, Prajapati R, Ahmad B, Kumar R. A transition from enemies to allies: how viruses improve drought resilience in plants. STRESS BIOLOGY 2024; 4:33. [PMID: 38981936 PMCID: PMC11233480 DOI: 10.1007/s44154-024-00172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 07/11/2024]
Abstract
Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.
Collapse
Affiliation(s)
- Ved Prakash
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Veerendra Sharma
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Ramgopal Prajapati
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
3
|
Varma A, Singh MK. The Role of Satellites in the Evolution of Begomoviruses. Viruses 2024; 16:970. [PMID: 38932261 PMCID: PMC11209209 DOI: 10.3390/v16060970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.
Collapse
Affiliation(s)
- Anupam Varma
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India;
| | | |
Collapse
|
4
|
Wang R, Yu M, Zhao X, Xia J, Cang J, Zhang D. Overexpression of TaMPK3 enhances freezing tolerance by increasing the expression of ICE-CBF-COR related genes in the Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23144. [PMID: 38669459 DOI: 10.1071/fp23144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in plant stress response. As a major member of the MAPK family, MPK3 has been reported to participate in the regulation of chilling stress. However, the regulatory function of wheat (Triticum aestivum ) mitogen-activated protein kinase TaMPK3 in freezing tolerance remains unknown. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with strong freezing tolerance; therefore, it is important to explore the mechanisms underlying this tolerance. In this study, the expression of TaMPK3 in Dn1 was detected under low temperature and hormone treatment. Gene cloning, bioinformatics and subcellular localisation analyses of TaMPK3 in Dn1 were performed. Overexpressed TaMPK3 in Arabidopsis thaliana was obtained, and freezing tolerance phenotype observations, physiological indices and expression levels of ICE-C-repeat binding factor (CBF)-COR -related genes were determined. In addition, the interaction between TaMPK3 and TaICE41 proteins was detected. We found that TaMPK3 expression responds to low temperatures and hormones, and the TaMPK3 protein is localised in the cytoplasm and nucleus. Overexpression of TaMPK3 in Arabidopsis significantly improves freezing tolerance. TaMPK3 interacts with the TaICE41 protein. In conclusion, TaMPK3 is involved in regulating the ICE-CBF-COR cold resistance module through its interaction with TaICE41, thereby improving freezing tolerance in Dn1 wheat.
Collapse
Affiliation(s)
- Rui Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingqiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Da Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Zhang XQ, Liang YJ, Zhang BQ, Yan MX, Wang ZP, Huang DM, Huang YX, Lei JC, Song XP, Huang DL. Screening of Sugarcane Proteins Associated with Defense against Leifsonia xyli subsp. xyli, Agent of Ratoon Stunting Disease. PLANTS (BASEL, SWITZERLAND) 2024; 13:448. [PMID: 38337981 PMCID: PMC10857455 DOI: 10.3390/plants13030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Sugarcane is the most important sugar crop and one of the leading energy-producing crops in the world. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli, poses a huge threat to ratoon crops, causing a significant yield loss in sugarcane. Breeding resistant varieties is considered the most effective and fundamental approach to control RSD in sugarcane. The exploration of resistance genes forms the foundation for breeding resistant varieties through molecular technology. The pglA gene is a pathogenicity gene in L. xyli subsp. xyli, encoding an endopolygalacturonase. In this study, the pglA gene from L. xyli subsp. xyli and related microorganisms was analyzed. Then, a non-toxic, non-autoactivating pglA bait was successfully expressed in yeast cells. Simultaneously the yeast two-hybrid library was generated using RNA from the L. xyli subsp. xyli-infected sugarcane. Screening the library with the pglA bait uncovered proteins that interacted with pglA, primarily associated with ABA pathways and the plant immune system, suggesting that sugarcane employs these pathways to respond to L. xyli subsp. xyli, triggering pathogenicity or resistance. The expression of genes encoding these proteins was also investigated in L. xyli subsp. xyli-infected sugarcane, suggesting multiple layers of regulatory mechanisms in the interaction between sugarcane and L. xyli subsp. xyli. This work promotes the understanding of plant-pathogen interaction and provides target proteins/genes for molecular breeding to improve sugarcane resistance to L. xyli subsp. xyli.
Collapse
Affiliation(s)
- Xiao-Qiu Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo 532415, China;
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Mei-Xin Yan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Ze-Ping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Dong-Mei Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Yu-Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Jing-Chao Lei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (X.-Q.Z.); (B.-Q.Z.); (M.-X.Y.); (Z.-P.W.); (D.-M.H.); (Y.-X.H.); (J.-C.L.)
| |
Collapse
|
6
|
Rajesh V, Jangra S, Ghosh A. Effect of silencing Thrips palmi Btk29A and COL3A1 on fitness and virus acquisition. Front Microbiol 2023; 14:1254246. [PMID: 37928674 PMCID: PMC10620694 DOI: 10.3389/fmicb.2023.1254246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Thrips palmi (Thysanoptera: Thripidae) is a major agricultural pest infesting over 200 plant species. Along with direct injury caused by feeding, T. palmi spreads several orthotospoviruses. Groundnut bud necrosis orthotospovirus (GBNV, family Tospoviridae, genus Orthotospovirus) is the predominant orthotospovirus in Asia, vectored by T. palmi. It is responsible for almost 89 million USD losses in Asia annually. Several transcripts of T. palmi related to innate immune response, receptor binding, cell signaling, cellular trafficking, viral replication, and apoptosis are responsive to the infection of orthotospoviruses in thrips. Expression of T. palmi tyrosine kinase Btk29A isoform X1 (Btk29A) and collagen alpha-1(III) chain-like (COL3A1) are significantly regulated post-GBNV and capsicum chlorosis orthotospovirus infection. In the present study, T. palmi Btk29A and COL3A1 were silenced and the effect on virus titer and fitness was assessed. The expression of Btk29A and COL3A1 was significantly reduced by 3.62 and 3.15-fold, respectively, 24 h post-dsRNA exposure. Oral administration of Btk29A and COL3A1 dsRNAs induced 60 and 50.9% mortality in T. palmi. The GBNV concentration in T. palmi significantly dropped post-silencing Btk29A. In contrast, the silencing of COL3A1 led to an increase in GBNV concentration in T. palmi compared to the untreated control. To the best of our knowledge, this is the first report on the effect of silencing Btk29A and COL3A1 on the fitness and GBNV titer in T. palmi.
Collapse
Affiliation(s)
- Vavilapalli Rajesh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Gnanasekaran P, Zhai Y, Kamal H, Smertenko A, Pappu HR. A plant virus protein, NIa-pro, interacts with Indole-3-acetic acid-amido synthetase, whose levels positively correlate with disease severity. FRONTIERS IN PLANT SCIENCE 2023; 14:1112821. [PMID: 37767296 PMCID: PMC10519798 DOI: 10.3389/fpls.2023.1112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Potato virus Y (PVY) is an economically important plant pathogen that reduces the productivity of several host plants. To develop PVY-resistant cultivars, it is essential to identify the plant-PVY interactome and decipher the biological significance of those molecular interactions. We performed a yeast two-hybrid (Y2H) screen of Nicotiana benthamiana cDNA library using PVY-encoded NIa-pro as the bait. The N. benthamiana Indole-3-acetic acid-amido synthetase (IAAS) was identified as an interactor of NIa-pro protein. The interaction was confirmed via targeted Y2H and bimolecular fluorescence complementation (BiFC) assays. NIa-pro interacts with IAAS protein and consequently increasing the stability of IAAS protein. Also, the subcellular localization of both NIa-pro and IAAS protein in the nucleus and cytosol was demonstrated. By converting free IAA (active form) to conjugated IAA (inactive form), IAAS plays a crucial regulatory role in auxin signaling. Transient silencing of IAAS in N. benthamiana plants reduced the PVY-mediated symptom induction and virus accumulation. Conversely, overexpression of IAAS enhanced symptom induction and virus accumulation in infected plants. In addition, the expression of auxin-responsive genes was found to be downregulated during PVY infection. Our findings demonstrate that PVY NIa-pro protein potentially promotes disease development via modulating auxin homeostasis.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Kumar S, Gupta N, Chakraborty S. Geminiviral betasatellites: critical viral ammunition to conquer plant immunity. Arch Virol 2023; 168:196. [PMID: 37386317 DOI: 10.1007/s00705-023-05776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, βC1, and βV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.
Collapse
Affiliation(s)
- Sunil Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Gnanasekaran P, Gupta N, Ponnusamy K, Devendran R, George B, Chakraborty S. Betasatellite-encoded βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of geminivirus-encoded replication initiator protein. J Gen Virol 2023; 104. [PMID: 37326617 DOI: 10.1099/jgv.0.001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Geminivirus-betasatellite disease complexes are an epidemic threat to the majority of economically important crops across the world. Plant virus satellites including betasatellites are maintained by their associated helper virus. Geminivirus-betasatellites influence viral pathogenesis by substantially increasing or decreasing their helper virus accumulation. In the present study, we attempted to understand the mechanistic details of the geminivirus-betasatellite interaction. Here, we used tomato leaf curl Gujarat virus (ToLCGV) and tomato leaf curl Patna betasatellite (ToLCPaB) as a model system. This study reveals that ToLCGV can efficiently trans-replicate ToLCPaB in Nicotiana benthamiana plants, but ToLCPaB greatly reduced the accumulation of its helper virus DNA. For the first time, we have identified that the ToLCPaB-encoded βC1 protein is able to interact with ToLCGV-encoded replication initiator protein (Rep). In addition, we demonstrate that the C-terminal region of βC1 interacts with the C-terminus of Rep (RepC) protein. Our previous study had established that βC1 proteins encoded by diverse betasatellites possess a novel ATP hydrolysis activity and the conserved lysine/arginine residues at positions 49 and 91 are necessary for this function. Here, we show that mutating lysine at positions 49 to alanine of βC1 (βC1K49A) protein did not affect its ability to interact with RepC protein. Biochemical studies performed with ATP hydrolysis activity-deficient K49A mutated βC1 (βC1K49A) and RepC proteins revealed that Rep-βC1 interaction interferes with the ATP hydrolysis activity of Rep protein. Further, we demonstrate that βC1 protein is able to interact with D227A and D289A mutated RepC proteins but not with D262A, K272A or D286A mutated RepC proteins, suggesting that the βC1-interacting region of Rep protein encompasses its Walker-B and B' motifs. The results of docking studies supported that the βC1-interacting region of Rep protein encompasses its motifs associated with ATP binding and ATP hydrolysis activities. Docking studies also provided evidence that the Rep-βC1 interaction interferes with the ATP binding activity of Rep protein. Together, our findings suggest that βC1 protein regulates helper virus accumulation by interfering with the ATP hydrolysis activity of helper virus Rep protein.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Kalaiarasan Ponnusamy
- Biotechnology Division, National Centre for Disease Control, New Delhi-110 054, India
| | - Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Biju George
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
10
|
Nair A, Harshith CY, Narjala A, Shivaprasad PV. Begomoviral βC1 orchestrates organellar genomic instability to augment viral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:934-950. [PMID: 36919198 DOI: 10.1111/tpj.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (βC1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral βC1 directly interferes with the host plastid homeostasis. βC1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that βC1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.
Collapse
Affiliation(s)
- Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
11
|
Marone D, Mastrangelo AM, Borrelli GM. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int J Mol Sci 2023; 24:ijms24087122. [PMID: 37108285 PMCID: PMC10138802 DOI: 10.3390/ijms24087122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.
Collapse
Affiliation(s)
- Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy
| |
Collapse
|
12
|
Zhang J, Ma M, Liu Y, Ismayil A. Plant Defense and Viral Counter-Defense during Plant-Geminivirus Interactions. Viruses 2023; 15:v15020510. [PMID: 36851725 PMCID: PMC9964946 DOI: 10.3390/v15020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Geminiviruses are the largest family of plant viruses that cause severe diseases and devastating yield losses of economically important crops worldwide. In response to geminivirus infection, plants have evolved ingenious defense mechanisms to diminish or eliminate invading viral pathogens. However, increasing evidence shows that geminiviruses can interfere with plant defense response and create a suitable cell environment by hijacking host plant machinery to achieve successful infections. In this review, we discuss recent findings about plant defense and viral counter-defense during plant-geminivirus interactions.
Collapse
Affiliation(s)
- Jianhang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengyuan Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence:
| |
Collapse
|
13
|
Huang C, Peng J, Zhang W, Chethana T, Wang X, Wang H, Yan J. LtGAPR1 Is a Novel Secreted Effector from Lasiodiplodia theobromae That Interacts with NbPsQ2 to Negatively Regulate Infection. J Fungi (Basel) 2023; 9:jof9020188. [PMID: 36836303 PMCID: PMC9967411 DOI: 10.3390/jof9020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effector proteins secreted by a pathogen not only promote the virulence and infection of the pathogen but also trigger plant defense response. Lasiodiplodia theobromae secretes many effectors that modulate and hijack grape processes to colonize host cells, but the underlying mechanisms remain unclear. Herein, we report LtGAPR1, which has been proven to be a secreted protein. In our study, LtGAPR1 played a negative role in virulence. By co-immunoprecipitation, 23 kDa oxygen-evolving enhancer 2 (NbPsbQ2) was identified as a host target of LtGAPR1. The overexpression of NbPsbQ2 in Nicotiana benthamiana reduced susceptibility to L. theobromae, and the silencing of NbPsbQ2 enhanced L. theobromae infection. LtGAPR1 and NbPsbQ2 were confirmed to interact with each other. Transiently, expressed LtGAPR1 activated reactive oxygen species (ROS) production in N. benthamiana leaves. However, in NbPsbQ2-silenced leaves, ROS production was impaired. Overall, our report revealed that LtGAPR1 promotes ROS accumulation by interacting with NbPsbQ2, thereby triggering plant defenses that negatively regulate infection.
Collapse
Affiliation(s)
- Caiping Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: ; Tel.: +86-010-5150-3212
| |
Collapse
|
14
|
Gnanasekaran P, Pappu HR. Detection of Protein-Protein Interactions Using Glutathione-S-Transferase (GST) Pull-Down Assay Technique. Methods Mol Biol 2023; 2690:111-115. [PMID: 37450141 DOI: 10.1007/978-1-0716-3327-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Pull-down assay is a technique to analyze direct protein-protein interaction under in vitro condition. Also, this technique is appropriate for investigating the direct interaction between two purified proteins. Glutathione-s-transferase (GST) protein is a widely used affinity tag for affinity purification. In this chapter, we explain the widely used GST pull-down assay to identify the protein-protein interaction between purified proteins.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
15
|
Gnanasekaran P, Pappu HR. Bimolecular Fluorescence Complementation (BiFC) Assay to Visualize Protein-Protein Interactions in Living Cells. Methods Mol Biol 2023; 2690:117-120. [PMID: 37450142 DOI: 10.1007/978-1-0716-3327-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) assay is a method to visualize the protein-protein interaction in living cells. This technique is based on ability of the non-fluorescent fragment of fluorescent protein to form fluorescent complex when they are fused to two interacting proteins. In this chapter, we describe the widely used split yellow fluorescent protein (YFP) system to visualize the protein-protein interaction in plant cells.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
16
|
Abstract
Protein-protein interactions are specific and direct physical contact between two or more proteins, and the interaction involves hydrogen bonding, electrostatic forces, and hydrophobic forces. Majority of biological processes in the living cell are executed by proteins, and any particular protein function is regulated by numerous other proteins. Thus, knowledge of protein-protein interaction is necessary to understand the biological processes. In this chapter, we explain the widely used yeast two-hybrid assay to identify the protein-interacting partners.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
17
|
Development of Comprehensive Serological Techniques for Sensitive, Quantitative and Rapid Detection of Soybean mosaic virus. Int J Mol Sci 2022; 23:ijms23169457. [PMID: 36012722 PMCID: PMC9409097 DOI: 10.3390/ijms23169457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean is an important grain and oil crop worldwide; however, the yield and seed quality of which are seriously affected by Soybean mosaic virus (SMV). As efficient detection technology is crucial for the field management of SMV, novel immunological detection methods were developed in the present study. According to the phylogenetic analysis, the CP coding sequence of SMV-SC7 was selected for the prokaryotic expression of the recombinant SMV-CP. Purified SMV-CP was used for the development of polyclonal antibodies (PAb) against the SMV-CP (PAb-SMV-CP) and monoclonal antibodies (MAb) against SMV-CP (MAb-SMV-CP). Subsequently, the PAb-SMV-CP was used for the development of a novel DAS- quantitative ELISA (DAS-qELISA) kit, of which the sensitivity was greater than 1:4000, and this could be used for the quantitative detection of SMV in China. Meanwhile, the MAb-SMV-CP was labeled with colloidal gold, and then was used for the development of the SMV-specific gold immunochromatography strip (SMV-GICS). The SMV-GICS gives accurate detection results through observed control lines and test lines in 5 to 10 min, sharing the same sensitivity as RT-PCR, and can be used for rapid, accurate and high-throughput field SMV detection. The DAS-qELISA kit and the SMV-GICA strip developed in this study are SMV-specific, sensitive, cheap and easy to use. These products will be conducive to the timely, efficient SMV epidemiology and detection in major soybean-producing regions in China and abroad.
Collapse
|
18
|
Structural insights into the RNA interaction with Yam bean Mosaic virus (coat protein) from Pachyrhizus erosus using bioinformatics approach. PLoS One 2022; 17:e0270534. [PMID: 35867657 PMCID: PMC9307209 DOI: 10.1371/journal.pone.0270534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/11/2022] [Indexed: 11/19/2022] Open
Abstract
Plants are constantly threatened by a virus infection, i.e., Potyviruses, the second largest genus of plant viruses which results in several million-dollar losses in various essential crops globally. Yam bean (Pachyrhizus erosus) is considered to be one of the essential tuberous legume crops holding a great potential source of starch. Yam Bean Mosaic Virus (YBMV) of Potyvirus group belonging to the family potyviridae affects Yam bean and several angiosperms both in the tropical and sub-tropical regions causing large economical losses in crops. In this study, we attempted to understand the sequence-structure relationship and mode of RNA binding mechanism in YBMV CP using in silico integrative modeling and all-atoms molecular dynamics (MD) simulations. The assembly of coat protein (CP) subunits from YBMV and the plausible mode of RNA binding were compared with the experimental structure of CP from Watermelon mosaic virus potyvirus (5ODV). The transmembrane helix region is present in the YBMV CP sequence ranging from 76 to 91 amino acids. Like the close structural-homolog, 24 CPs monomeric sub-units formed YBMV a conserved fold. Our computational study showed that ARG124, ARG155, and TYR151 orient towards the inner side of the virion, while, THR122, GLN125, SER92, ASP94 reside towards the outer side of the virion. Despite sharing very low sequence similarity with CPs from other plant viruses, the strongly conserved residues Ser, Arg, and Asp within the RNA binding pocket of YBMV CP indicate the presence of a highly conserved RNA binding site in CPs from different families. Using several bioinformatics tools and comprehensive analysis from MD simulation, our study has provided novel insights into the RNA binding mechanism in YBMV CP. Thus, we anticipate that our findings from this study will be useful for the development of new therapeutic agents against the pathogen, paving the way for researchers to better control this destructive plant virus.
Collapse
|
19
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
20
|
Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R, Zhou M. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC PLANT BIOLOGY 2021; 21:585. [PMID: 34886797 PMCID: PMC8656106 DOI: 10.1186/s12870-021-03339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Collapse
Affiliation(s)
- Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | | | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Kim Yrjala
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
21
|
Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell CA, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). PHOTOSYNTHESIS RESEARCH 2021; 150:279-294. [PMID: 31900791 DOI: 10.1007/s11120-019-00706-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to complex nature of sugarcane, the effect of SCMV pathogenicity on sugarcane photosynthetic systems remains to be explored. In this study, we investigated the alterations occurring in the photosynthetic system in the sugarcane genotypes at the cytopathological, physiological and biological, transcriptome and proteome level. We generated the transcriptome assembly of two genotypes (susceptible Badila and resistant B-48) using Saccharum spontaneum L. as a reference genome. RNA-sequencing data revealed the significant upregulation of NAD(P)H, RubisCO, oxygen-evolving complex, chlorophyll a and b binding protein, Psb protein family, PSI reaction center subunit II, and IVgenes in B-48, as compared to its counterparts. Upregulated genes in B-48 are associated with various processes such as stability and assembly of photosystem, protection against photoinhibition and antiviral defense. The expression pattern of differentially abundant genes were further verified at the proteomics level. Overall, differentially expressed genes/proteins (DEGs/DEPs) showed the consistency of expression at both transcriptome and proteome level in B-48 genotype. Comprehensively, these data supported the efficiency of B-48 genotype under virus infection conditions and provided a better understanding of the expression pattern of photosynthesis-related genes in sugarcane.
Collapse
Affiliation(s)
- Sehrish Akbar
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Miaohong Ruan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning, 530005, China.
- IRREC-IFAS, University of Florida, Fort Pierce, FL, 34945, USA.
| |
Collapse
|
22
|
Martin IR, Vigne E, Velt A, Hily JM, Garcia S, Baltenweck R, Komar V, Rustenholz C, Hugueney P, Lemaire O, Schmitt-Keichinger C. Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses 2021; 13:2138. [PMID: 34834945 PMCID: PMC8625034 DOI: 10.3390/v13112138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Virus infection of plants can result in various degrees of detrimental impacts and disparate symptom types and severities. Although great strides have been made in our understanding of the virus-host interactions in herbaceous model plants, the mechanisms underlying symptom development are poorly understood in perennial fruit crops. Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. After validation of the infection status of the experimental vines by high-throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically deregulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptomless. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines, whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Corinne Schmitt-Keichinger
- Santé de la Vigne et Qualité du Vin, INRAE, Université de Strasbourg, 68000 Colmar, France; (E.V.); (A.V.); (J.-M.H.); (S.G.); (R.B.); (V.K.); (C.R.); (P.H.); (O.L.)
| |
Collapse
|
23
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. NbPsbO1 Interacts Specifically with the Bamboo Mosaic Virus (BaMV) Subgenomic RNA (sgRNA) Promoter and Is Required for Efficient BaMV sgRNA Transcription. J Virol 2021; 95:e0083121. [PMID: 34379502 PMCID: PMC8475527 DOI: 10.1128/jvi.00831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chu I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Na Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Gnanasekaran P, Gupta N, Ponnusamy K, Chakraborty S. Geminivirus Betasatellite-Encoded βC1 Protein Exhibits Novel ATP Hydrolysis Activity That Influences Its DNA-Binding Activity and Viral Pathogenesis. J Virol 2021; 95:e0047521. [PMID: 34132576 PMCID: PMC8354231 DOI: 10.1128/jvi.00475-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Plant virus satellites are maintained by their associated helper viruses, and satellites influence viral pathogenesis. Diseases caused by geminivirus-betasatellite complexes can become epidemics and therefore have become a threat to economically important crops across the world. Here, we identified a novel molecular function of the betasatellite-encoded pathogenicity determinant βC1. The tomato leaf curl Patna betasatellite (ToLCPaB)-encoded βC1 protein was found to exhibit novel ATPase activity in the presence of the divalent metal ion cofactor MgCl2. Moreover, ATPase activity was confirmed to be ubiquitously displayed by βC1 proteins encoded by diverse betasatellites. Mutational and sequence analysis showed that conserved lysine/arginine residues at positions 49/50 and 91 of βC1 proteins are essential for their ATPase activity. Biochemical studies revealed that the DNA-binding activity of the βC1 protein was interfered with by the binding of ATP to the protein. Mutating arginine 91 of βC1 to alanine reduced its DNA-binding activity. The results of docking studies provided evidence for an overlap of the ATP-binding and DNA-binding regions of βC1 and for the importance of arginine 91 for both ATP-binding and DNA-binding activities. A mutant betasatellite with a specifically βC1-ATPase dominant negative mutation was found to induce symptoms on Nicotiana benthamiana plants similar to those induced by wild-type betasatellite infection. The ATPase function of βC1 was found to be negatively associated with geminivirus-betasatellite DNA accumulation, despite the positive influence of this ATPase function on the accumulation of replication-associated protein (Rep) and βC1 transcripts. IMPORTANCE Most satellites influence the pathogenesis of their helper viruses. Here, we characterized the novel molecular function of βC1, a nonstructural pathogenicity determinant protein encoded by a betasatellite. We demonstrated the display of ATPase activity by this βC1 protein. Additionally, we confirmed the ubiquitous display of ATPase activity by βC1 proteins encoded by diverse betasatellites. The lysine/arginine residues conserved at positions 49 and 91 of βC1 were found to be crucial for its ATPase function. DNA-binding activity of βC1 was found to be reduced in the presence of ATP. Inhibition of ATPase activity of βC1 in the presence of an excess concentration of cold ATP, GTP, CTP, or UTP suggested that the purified βC1 can also hydrolyze other cellular nucleoside triphosphates (NTPs) besides ATP in vitro. These results established the importance of the ATPase and DNA-binding activities of the βC1 protein in regulating geminivirus-betasatellite DNA accumulation in the infected plant cell.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| | - Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| | | | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru Universitygrid.10706.30, New Delhi, India
| |
Collapse
|
25
|
Gupta N, Reddy K, Bhattacharyya D, Chakraborty✉ S. Plant responses to geminivirus infection: guardians of the plant immunity. Virol J 2021; 18:143. [PMID: 34243802 PMCID: PMC8268416 DOI: 10.1186/s12985-021-01612-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Collapse
Affiliation(s)
- Neha Gupta
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kishorekumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty✉
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
26
|
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S, Chen J, Yan F. Downregulation of Light-Harvesting Complex II Induces ROS-Mediated Defense Against Turnip Mosaic Virus Infection in Nicotiana benthamiana. Front Microbiol 2021; 12:690988. [PMID: 34290685 PMCID: PMC8287655 DOI: 10.3389/fmicb.2021.690988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
The light-harvesting chlorophyll a/b complex protein 3 (LHCB3) of photosystem II plays important roles distributing the excitation energy and modulating the rate of state transition and stomatal response to abscisic acid. However, the functions of LHCB3 in plant immunity have not been well investigated. Here, we show that the expression of LHCB3 in Nicotiana benthamiana (NbLHCB3) was down-regulated by turnip mosaic virus (TuMV) infection. When NbLHCB3 was silenced by tobacco rattle virus-induced gene silencing, systemic infection of TuMV was inhibited. H2O2 was over-accumulated in NbLHCB3-silenced plants. Chemical treatment to inhibit or eliminate reactive oxygen species (ROS) impaired the resistance of the NbLHCB3-silenced plants to TuMV infection. Co-silencing of NbLHCB3 with genes involved in ROS production compromised the resistance of plants to TuMV but co-silencing of NbLHCB3 with genes in the ROS scavenging pathway increased resistance to the virus. Transgenic plants overexpressing NbLHCB3 were more susceptible to TuMV. These results indicate that downregulation of NbLHCB3 is involved in defense against TuMV by inducing ROS production.
Collapse
Affiliation(s)
- Shiyou Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuhong Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
27
|
Yuan B, Liu T, Cheng Y, Gao S, Li L, Cai L, Yang J, Chen J, Zhong K. Comprehensive Proteomic Analysis of Lysine Acetylation in Nicotiana benthamiana After Sensing CWMV Infection. Front Microbiol 2021; 12:672559. [PMID: 34084157 PMCID: PMC8166574 DOI: 10.3389/fmicb.2021.672559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protein lysine acetylation (Kac) is an important post-translational modification mechanism in eukaryotes that is involved in cellular regulation. To investigate the role of Kac in virus-infected plants, we characterized the lysine acetylome of Nicotiana benthamiana plants with or without a Chinese wheat mosaic virus (CWMV) infection. We identified 4,803 acetylated lysine sites on 1,964 proteins. A comparison of the acetylation levels of the CWMV-infected group with those of the uninfected group revealed that 747 sites were upregulated on 422 proteins, including chloroplast localization proteins and histone H3, and 150 sites were downregulated on 102 proteins. Nineteen conserved motifs were extracted and 51 percent of the acetylated proteins located on chloroplast. Nineteen Kac sites were located on histone proteins, including 10 Kac sites on histone 3. Bioinformatics analysis results indicated that lysine acetylation occurs on a large number of proteins involved in biological processes, especially photosynthesis. Furthermore, we found that the acetylation level of chloroplast proteins, histone 3 and some metabolic pathway-related proteins were significantly higher in CWMV-infected plants than in uninfected plants. In summary, our results reveal the regulatory roles of Kac in response to CWMV infection.
Collapse
Affiliation(s)
- Bowen Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.,Yantai Academy of Agricultural Science, Yantai, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Yantai, China
| | - Linna Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q, Li M, Shang B, Ma H, Liu G, Wang Y, Xu Y. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1557-1570. [PMID: 33783031 DOI: 10.1111/tpj.15252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2 O2 accumulation and activated the 1 O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2 O2 accumulation and activates the 1 O2 signaling pathway through stabilizing PsbP, thereby promoting disease.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
29
|
Akhtar S, Tahir MN, Amin I, Mansoor S. Amplicon-based RNAi construct targeting beta-C1 gene gives enhanced resistance against cotton leaf curl disease. 3 Biotech 2021; 11:256. [PMID: 33987073 PMCID: PMC8106552 DOI: 10.1007/s13205-021-02816-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is one of the major limiting factors affecting cotton production in Pakistan for the last three decades. The disease is caused by begomoviruses of the family Geminiviridae. RNA interference (RNAi) is a promising tool that has been proved effective against several pathogens. Using RNAi, different genomic regions of geminiviruses have been targeted to attain sustainable resistance. However, the silencing of the transgene upon virus infection is a limiting factor. Here, we have developed for the first time an amplicon-based RNAi construct to target βC1 gene of betasatellite associated with cotton leaf curl begomoviruses. In addition to producing short interfering (si) RNAs, Rep-based activation or looping out of the construct induced upon virus infection produces multiple copies of transgene that results in accumulation of defective molecules of betasatellite. Subsequent transcription gives rise to increased number of siRNAs that gives enhanced resistance. Transgenic Nicotiana benthamiana plants having RCβ (RNAi construct for betasatellite) were challenged against Cotton leaf curl Khokran virus (CLCuKV) and Cotton leaf curl Multan betasatellite (CLCuMB). Reduced titer of the virus and betasatellite were detected through Southern blot hybridization. Significance of the study has been discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02816-6.
Collapse
Affiliation(s)
- Sohail Akhtar
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Sub-Campus Burewala, University of Agriculture, Faisalabad, Postal code 61010 Pakistan
| | - Muhammad Nouman Tahir
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
- Present Address: Department of Plant Pathology, Bahauddin Zakariya University, Multan, Postal code 66000 Pakistan
| | - Imran Amin
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| | - Shahid Mansoor
- Molecular Virology and Gene Silencing Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Postal code 38000 Pakistan
| |
Collapse
|
30
|
Liu GT, Wang BB, Lecourieux D, Li MJ, Liu MB, Liu RQ, Shang BX, Yin X, Wang LJ, Lecourieux F, Xu Y. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. HORTICULTURE RESEARCH 2021; 8:100. [PMID: 33931609 PMCID: PMC8087781 DOI: 10.1038/s41438-021-00533-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Wild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii "LiuBa-8" (LB) and susceptible V. vinifera "Pinot Noir" (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.
Collapse
Affiliation(s)
- Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - David Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Mei-Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ming-Bo Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Bo-Xing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li-Jun Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
31
|
Zhan J, Shi H, Li W, Zhang C, Zhang Y. NbTMP14 Is Involved in Tomato Spotted Wilt Virus Infection and Symptom Development by Interaction with the Viral NSm Protein. Viruses 2021; 13:427. [PMID: 33800072 PMCID: PMC7999277 DOI: 10.3390/v13030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is one of the most destructive plant viruses, causing severe losses in many important crops worldwide. The non-structural protein NSm of TSWV is a viral movement protein that induces viral symptoms. However, the molecular mechanisms by which NSm contributes to symptom development are unclear. Here, we present evidence that NSm directly interacts with Nicotiana benthamiana chloroplast thylakoid membrane protein TMP14 (NbTMP14) by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. The interaction between NSm and NbTMP14 led to the translocation of the NbTMP14 protein from the chloroplast to the cytoplasm in TSWV-infected plants, and overexpressing NSm decreased NbTMP14 mRNA accumulation. In addition, abnormal chloroplasts and starch accumulation were observed in TSWV-infected plants. Silencing of NbTMP14 by TRV VIGS also showed similar results to those of TSWV-infected plants. Overexpressing NbTMP14 in transgenic N. benthamiana plants impeded TSWV infection, and silencing NbTMP14 in N. benthamiana plants increased disease symptom severity and virus accumulation. To our knowledge, this is the first report showing that the plant chloroplast TMP14 protein is involved in viral infection. Knowledge of the interaction between NSm and NbTMP14 advances our understanding of the molecular mechanisms underlying TSWV symptom development and infection.
Collapse
Affiliation(s)
| | | | | | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.); (H.S.); (W.L.)
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.Z.); (H.S.); (W.L.)
| |
Collapse
|
32
|
Yang F, Xiao K, Pan H, Liu J. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:637853. [PMID: 33747017 PMCID: PMC7966814 DOI: 10.3389/fpls.2021.637853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 05/08/2023]
Abstract
Higher plants and some algae convert the absorbed light into chemical energy through one of the most important organelles, chloroplast, for photosynthesis and store it in the form of organic compounds to supply their life activities. However, more and more studies have shown that the role of chloroplasts is more than a factory for photosynthesis. In the process of light conversion to chemical energy, any damage to the components of chloroplast may affect the photosynthesis efficiency and promote the production of by-products, reactive oxygen species, that are mainly produced in the chloroplasts. Substantial evidence show that chloroplasts are also involved in the battle of plants and microbes. Chloroplasts are important in integrating a variety of external environmental stimuli and regulate plant immune responses by transmitting signals to the nucleus and other cell compartments through retrograde signaling pathways. Besides, chloroplasts can also regulate the biosynthesis and signal transduction of phytohormones, including salicylic acid and jasmonic acid, to affect the interaction between the plants and microbes. Since chloroplasts play such an important role in plant immunity, correspondingly, chloroplasts have become the target of pathogens. Different microbial pathogens target the chloroplast and affect its functions to promote their colonization in the host plants.
Collapse
Affiliation(s)
| | | | | | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
33
|
Iqbal Z, Sattar MN, Khurshid M. Cotton Leaf Curl Multan Betasatellite as a Tool to Study the Localization of Geminiviruses in Plants. Mol Biol 2021. [DOI: 10.1134/s0026893321010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yogindran S, Kumar M, Sahoo L, Sanatombi K, Chakraborty S. Occurrence of Cotton leaf curl Multan virus and associated betasatellites with leaf curl disease of Bhut-Jolokia chillies (Capsicum chinense Jacq.) in India. Mol Biol Rep 2021; 48:2143-2152. [PMID: 33635470 PMCID: PMC7908524 DOI: 10.1007/s11033-021-06223-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Geminiviridae comprises the largest family of plant viruses which causes severe crop losses in India. The highest pungency chilli Bhut-Jolokia or ghost pepper (Capsicum chinense Jaqc.) hails from North-East region of India and is used in many dishes to add flavors and also for its medicinal value. However, this chilli variety is also affected by viruses leading to crop and economic losses. The present study reports the identification of begomoviruses in the infected chilli Bhut-Jolokia leaf samples collected from eight different places of North-East region (Manipur) of India. The infected leaf samples were screened for the presence of viral genome by rolling circle amplification (RCA) followed by PCR using degenerate primer pairs. The subsequent analyses using restriction fragment length polymorphism and sequencing revealed the presence of Cotton leaf curl Multan virus (CLCuMuV), and Tomato leaf curl Patna betasatellite (ToLCPaB). The findings focus on the phylogenetic relatedness, probable recombinational hot-spots and evolutionary divergence of the viral DNA sequences with the current reported begomoviral genome. To the best of our knowledge, this is the first report showing the presence of CLCuMuV, and associated non-cognate ToLCPaB with leaf curl disease of Bhut-Jolokia chillies. The study reveals potential recombination sites on both viral genome and betsatellite which, during the course of evolution, may have aided the virus to progress and successfully establish infection in chilli plants. Taken together, our results suggest a possible spread of CLCuMuV to the hitherto non-host crop in the North-East region of India.
Collapse
Affiliation(s)
- Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Lingaraj Sahoo
- Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
35
|
Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, Ding X, Zhang D, Fu X, Kim C, Lozano-Duran R. A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-opted by Pathogens. Cell 2020; 182:1109-1124.e25. [DOI: 10.1016/j.cell.2020.07.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022]
|
36
|
Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. Int J Mol Sci 2019; 21:ijms21010035. [PMID: 31861651 PMCID: PMC6981863 DOI: 10.3390/ijms21010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) has been occurring frequently worldwide and causes severe yield losses in maize (Zea mays). To better investigate the destructive effects of MCMV infection on maize plants, isobaric tagging for relative and absolute quantitation (iTRAQ)-based comparative proteomic analysis was performed on MCMV infected maize cv. B73. A total of 972 differentially abundant proteins (DAPs), including 661 proteins with increased abundance and 311 proteins with reduced abundance, were identified in response to MCMV infection. Functional annotations of DAPs and measurement of photosynthetic activity revealed that photosynthesis was decreased, while the abundance of ribosomal proteins, proteins related to stress responses, oxidation-reduction and redox homeostasis was altered significantly during MCMV infection. Two DAPs, disulfide isomerases like protein ZmPDIL-1 and peroxiredoxin family protein ZmPrx5, were further analyzed for their roles during MCMV infection through cucumber mosaic virus-based virus-induced gene silencing (CMV-VIGS). The accumulation of MCMV was suppressed in ZmPDIL-1-silenced or ZmPrx5-silenced B73 maize, suggesting ZmPDIL-1 and ZmPrx5 might enhance host susceptibility to MCMV infection.
Collapse
|