1
|
Yan S, Zhang Q, Jia S, Guo M, Zhang Q, Gu P. Endophytic strategies decoded by genome and transcriptome analysis of Fusarium nematophilum strain NQ8GII4. Front Microbiol 2025; 15:1487022. [PMID: 39881987 PMCID: PMC11774914 DOI: 10.3389/fmicb.2024.1487022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Fusarium nematophilum strain NQ8GII4 is an endophytic fungus with significant potential for improving growth and disease resistance of alfalfa. However, the molecular mechanisms underlying the symbiotic relationship between NQ8GII4 and alfalfa roots remain poorly understood. Methods In this study, we conducted (1) a comparative genomic analysis of selected saprophytic, pathogenic, and endophytic fungi, including molecular phylogeny analysis, whole-genome alignment, and divergence date estimation positioning, and (2) transcriptomic profiling of alfalfa roots infected with NQ8GII4. Results Our findings reveal that NQ8GII4 is genetically closely related to F. solani, suggesting it diverged from Fusarium phytopathogens. During the early stages of symbiosis establishment, genes encoding glycosyltransferases (GTs), fungal cell wall-degrading enzymes (FCWDEs), and steroid-14α-demethylase (CYP51) were significantly downregulated, potentially suppressing hyphal growth of the fungus. Once symbiosis was established, NQ8GII4 secreted effectors that activated plant immunity, which in turn could slow growth of the fungus. Moreover, genes involved in secondary metabolite biosynthesis, such as type I polyketide synthases (T1PKS) and non-ribosomal peptide synthetases (NRPSs), were significantly downregulated. Homologs of autophagy-related genes, including ATG1, ATG2, ATG11, and others, were also downregulated, suggesting that reduced phytotoxin production and autophagy inhibition is a consequence of NQ8GII4's symbiosis. Discussion This study investigated the comprehensive molecular and genetic mechanisms governing the interaction between NQ8GII4 and alfalfa roots. Beyond the NQ8GII4-alfalfa system, these findings also provide a valuable molecular framework for understanding the mechanism of interactions between endophytic fungi and their host plants.
Collapse
Affiliation(s)
- Siyuan Yan
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, United States
| | - Shuxin Jia
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Miaomiao Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qiangqiang Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Peiwen Gu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Zhang J, Pan L, Xu W, Yang H, He F, Ma J, Bai L, Zhang Q, Zhou Q, Gao H. Extracellular vesicles in plant-microbe interactions: Recent advances and future directions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111999. [PMID: 38307350 DOI: 10.1016/j.plantsci.2024.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that have a crucial role in mediating intercellular communication in mammals by facilitating the transport of proteins and small RNAs. However, the study of plant EVs has been limited for a long time due to insufficient isolation and detection methods. Recent research has shown that both plants and plant pathogens can release EVs, which contain various bioactive molecules like proteins, metabolites, lipids, and small RNAs. These EVs play essential roles in plant-microbe interactions by transferring these bioactive molecules across different kingdoms. Additionally, it has been discovered that EVs may contribute to symbiotic communication between plants and pathogens. This review provides a comprehensive summary of the pivotal roles played by EVs in mediating interactions between plants and microbes, including pathogenic fungi, bacteria, viruses, and symbiotic pathogens. We highlight the potential of EVs in transferring immune signals between plant cells and facilitating the exchange of active substances between different species.
Collapse
Affiliation(s)
- Junsong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Hongchao Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Jianfeng Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Linlin Bai
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingchen Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
3
|
Gomdola D, McKenzie EHC, Hyde KD, Bundhun D, Jayawardena RS. Appressoria-Producing Sordariomycetes Taxa Associated with Jasminum Species. Pathogens 2023; 12:1407. [PMID: 38133291 PMCID: PMC10745922 DOI: 10.3390/pathogens12121407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Appressoria are specialized structures formed by certain phytopathogenic fungi during the early stages of the infection process. Over the years, significant advancements have been made in understanding the formation, types, and functions of appressoria. Besides being formed primarily by fungal pathogens, many studies have reported their occurrence in other life modes such as endophytes, epiphytes, and saprobes. In this study, we observed the formation of appressoria in fungal genera that have been found associated with leaf spots and, interestingly, by a saprobic species. We used morphological descriptions and illustrations, molecular phylogeny, coalescent-based Poisson tree processes (PTP) model, inter- and intra-species genetic distances based on their respective DNA markers, and Genealogical Concordance Phylogenetic Species Recognition Analysis (GCPSR) to establish a new species (Pseudoplagiostoma jasmini), a Ciliochorella sp., and a new host record (Coniella malaysiana). The Ciliochorella sp. is reported as a saprobe, while Pseudoplagiostoma jasmini and Coniella malaysiana were found to be associated with leaf spots of Jasminum species. All three taxa produce appressoria, and this is the first study that reports the formation of appressoria by a Ciliochorella sp. and a Pseudoplagiostoma sp.
Collapse
Affiliation(s)
- Deecksha Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (D.G.); (K.D.H.); (D.B.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (D.G.); (K.D.H.); (D.B.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Digvijayini Bundhun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (D.G.); (K.D.H.); (D.B.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (D.G.); (K.D.H.); (D.B.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Qiao Q, Sun Y, Xu Y, Shu H, Zhang Z, Liu F, Wang H, Ye W, Dong S, Wang Y, Ma Z, Wang Y. Divergent sequences of tetraspanins enable plants to specifically recognize microbe-derived extracellular vesicles. Nat Commun 2023; 14:4877. [PMID: 37573360 PMCID: PMC10423219 DOI: 10.1038/s41467-023-40623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Extracellular vesicles (EVs) are important for cell-to-cell communication in animals. EVs also play important roles in plant-microbe interactions, but the underlying mechanisms remain elusive. Here, proteomic analyses of EVs from the soybean (Glycine max) root rot pathogen Phytophthora sojae identify the tetraspanin family proteins PsTET1 and PsTET3, which are recognized by Nicotiana benthamiana to trigger plant immune responses. Both proteins are required for the full virulence of P. sojae. The large extracellular loop (EC2) of PsTET3 is the key region recognized by N. benthamiana and soybean cells in a plant receptor-like kinase NbSERK3a/b dependent manner. TET proteins from oomycete and fungal plant pathogens are recognized by N. benthamiana thus inducing immune responses, whereas plant-derived TET proteins are not due to the sequence divergence of sixteen amino acids at the C-terminal of EC2. This feature allows plants to distinguish self and non-self EVs to trigger active defense responses against pathogenic eukaryotes.
Collapse
Affiliation(s)
- Jinyi Zhu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qian Qiao
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), 210095, Nanjing, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
5
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Phukhamsakda C, Abeywickrama PD, Samarakoon MC, Senwanna C, Mapook A, Tang X, Gomdola D, Marasinghe DS, Padaruth OD, Balasuriya A, Xu J, Lumyong S, Hyde KD. Appressorial interactions with host and their evolution. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00487-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. Identification of ε-Poly-L-lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal ε-PL Synthetase Gene. Molecules 2020; 25:molecules25051032. [PMID: 32106587 PMCID: PMC7179176 DOI: 10.3390/molecules25051032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
The endophytic fungus Epichloë festucae is known to produce bioactive metabolites, which consequently protect the host plants from biotic and abiotic stresses. We previously found that the overexpression of vibA (a gene for transcription factor) in E. festucae strain E437 resulted in the secretion of an unknown fungicide. In the present study, the active substance was purified and chemically identified as ε-poly-L-lysine (ε-PL), which consisted of 28–34 lysine units. The productivity was 3.7-fold compared with that of the wild type strain E437. The isolated ε-PL showed inhibitory activity against the spore germination of the plant pathogens Drechslera erythrospila, Botrytis cinerea, and Phytophthora infestans at 1–10 μg/mL. We also isolated the fungal gene “epls” encoding ε-PL synthetase Epls. Overexpression of epls in the wild type strain E437 resulted in the enhanced production of ε-PL by 6.7-fold. Interestingly, overexpression of epls in the different strain E. festucae Fl1 resulted in the production of shorter ε-PL with 8–20 lysine, which exhibited a comparable antifungal activity to the longer one. The results demonstrate the first example of ε-PL synthetase gene from the eukaryotic genomes and suggest the potential of enhanced expression of vibA or/and epls genes in the Epichloë endophyte for constructing pest-tolerant plants.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Tatsuhiko Kondo
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Daigo Takemoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
| | - Jennifer T. Niones
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
- Philippine Rice Research Institute, Science City of Munoz, Nueva Ecija 3119, Philippines
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
- Correspondence: ; Tel.: +81-52-789-4116; Fax: +81-52-789-4118
| |
Collapse
|
8
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|