1
|
Wagner N, Baumer E, Lyubman I, Shimony Y, Bracha N, Martins L, Potnis N, Chang JH, Teper D, Koebnik R, Pupko T. Effectidor II: a pan-genomic AI-based algorithm for the prediction of type III secretion system effectors. BIOINFORMATICS (OXFORD, ENGLAND) 2025; 41:btaf272. [PMID: 40300094 DOI: 10.1093/bioinformatics/btaf272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/27/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
MOTIVATION Type III secretion systems are used by many Gram-negative bacteria to inject type 3 effectors (T3Es) directly into eukaryotic cells, promoting disease or provoking immune response. Because of these opposing evolutionary forces, T3E repertoires often vary within taxonomic groups. Identifying the full effector gene repertoire in genomes of related individuals is crucial for determining core and specialized effectors, understanding the disease dynamics, and developing appropriate management strategies against pathogens. It can also help uncover novel T3Es that have recently emerged in a population. Our previously published Effectidor web server successfully addressed the challenge of identifying T3Es in a single bacterial genome. Here, we enriched the web server with various novel capabilities, including the identification of T3Es from multiple genome sequences simultaneously. RESULTS We present Effectidor II, a web server that relies on machine learning to predict T3E-encoding genes within bacterial pan-genomes. We demonstrate the benefit of learning based on features extracted from the entire sequences comprising the pan-genome and report a novel T3E discovered by it in Xanthomonas euroxanthea. AVAILABILITY AND IMPLEMENTATION Effectidor II is available at: https://effectidor.tau.ac.il and the source code is available at: https://github.com/naamawagner/Effectidor. A stand-alone version of Effectidor II is available at: https://github.com/naamawagner/Effectidor/tree/StandAlone. The source code for the standalone version and the data used in this work are also provided in https://doi.org/10.5281/zenodo.15081636.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| | - Ella Baumer
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| | - Iris Lyubman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| | - Yair Shimony
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| | - Noam Bracha
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| | - Leonor Martins
- CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, 4169-007, Portugal
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, United States of America
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, United States of America
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Chaim Levanon St 30, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Wang L, Mijiti M, Abuduzhayier A, Zhao T, Guan W, Yang L, Yang Y. dctA, dctB, and dctD contribute to the utilization of C4-dicarboxylates, carbon, nitrogen, as well as virulence in Acidovoraxcitrulli. Microb Pathog 2025; 205:107623. [PMID: 40268152 DOI: 10.1016/j.micpath.2025.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/21/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Bacterial fruit blotch (BFB), a destructive bacterial disease triggered by Acidovorax citrulli, affects cucurbit crops like watermelon and melon. The absorption and use of carbon sources are foundational for bacteria to successfully colonize host plants. C4-dicarboxylates are critical carbon and energy substances, and their transport is completed by the C4-dicarboxylate transport system (Dct) which plays an important role in typical bacterial metabolism. However, the role of dct genes have not been determined for A. citrulli. To clarify the biological roles of the Dct system-related genes in A. citrulli, we developed dctA1, dctA2, dctB, and dctD deletion mutants, as well as dctA1A2 double deletion mutant, with their corresponding complementary strains in the A. citrulli wild-type strain Aac5 in this study. The functions of Dct-related genes in A. citrulli were analyzed through phenotype assays, including pathogenicity, C4-dicarboxylates utilization, carbon and nitrogen utilization, biofilm formation, swimming motility, and qRT-PCR analysis. Compared to the wild-type strain, the pathogenicity, utilization of C4-dicarboxylates, growth ability in vivo and in vitro, and seed adhesion ability of the mutant strains were significantly limited, while the biofilm formation ability was significantly improved. Additionally, the utilization of select carbon sources (glucose, maltose, and sucrose) and nitrogen sources ((NH4)2SO4, NH4Cl, CH4N2O, and KNO3) was significantly enhanced. qRT-PCR results demonstrated that the deletion of Dct-related genes resulted in significant downregulation of the expression of T3SS-related genes (hrpG and hrpE), the pili-related genes (pilA and pilN), and some flagellum-related genes (fliC, flhC, and flhD). These findings suggested that Dct-related genes were involved in C4-dicarboxylate utilization, carbon and nitrogen use, and the pathogenicity of A. citrulli.
Collapse
Affiliation(s)
- Lan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Maihemuti Mijiti
- College of Agronomy, Xinjiang Agricultural University, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, 830052, China.
| | - Ayijiamali Abuduzhayier
- College of Agronomy, Xinjiang Agricultural University, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, 830052, China.
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lina Yang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
3
|
Sawada H, Shinohara H, Takashima Y, Naito K, Satou M. Acidovorax sacchari sp. nov., a pathogen causing red stripe of sugarcane in Japan. Int J Syst Evol Microbiol 2025; 75:006575. [PMID: 39907557 PMCID: PMC11797039 DOI: 10.1099/ijsem.0.006575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 02/06/2025] Open
Abstract
Phytopathogenic bacteria (MAFF 311311T and MAFF 311313) were isolated from sugarcane plants exhibiting leaf stripe symptoms associated with red stripe disease in Okinawa Prefecture, Japan. The strains were Gram-reaction-negative, aerobic, motile with one polar flagellum, rod-shaped and non-spore-forming. The genomic DNA G+C content was 69.0 mol%, and the major cellular fatty acids (>10 % of the total fatty acids) included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). Phylogenomic analyses using whole-genome sequences consistently placed these strains within the genus Acidovorax. However, their phylogenetic positions did not correspond to any known species within this genus. Comparative analyses, including average nucleotide identity and digital DNA-DNA hybridization with closely related species, yielded values below the thresholds for prokaryotic species delineation (95-96 and 70 %, respectively), with the highest values observed for Acidovorax oryzae ATCC 19882T (93.98 and 54.3 %, respectively). Phenotypic characteristics, cellular fatty acid composition and a repertoire of secretion systems and their effectors can differentiate these strains from their closest relatives. The phenotypic, chemotaxonomic and genotypic data obtained in this study indicate that MAFF 311311T and MAFF 311313 constitute a novel species within the genus Acidovorax, for which we propose the name Acidovorax sacchari sp. nov., with MAFF 311311T (=ICMP 25276T) designated as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirosuke Shinohara
- Graduate School of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Yusuke Takashima
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
4
|
Tang X, Luo L, Wang S. TSE-ARF: An adaptive prediction method of effectors across secretion system types. Anal Biochem 2024; 686:115407. [PMID: 38030053 DOI: 10.1016/j.ab.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Bacterial effector proteins are secreted by a variety of protein secretion systems and play an important role in the interaction between the host and pathogenic bacteria. Therefore, it is important to find a fast and inexpensive method to discover bacterial effectors. In this study, we propose a multi-type secretion effector adaptive random forest (TSE-ARF) to adaptively identify secretion effectors across T1SE-T4SE and T6SE based only on protein sequences. First, we proposed two new feature descriptors by considering some characteristic protein information and fused them with some universal features to form a 290-dimensional feature vector with good versatility. Then, the TSE-ARF model was used to make classification predictions by parameter adaptation of different secretion effectors integrating Shuffled Frog Leaping Algorithm and random forest. The perfect performance in TSE-ARF under different data sets and settings shows its considerable generalization ability, with which more candidate effectors were screened in the whole genome. Source code is available at https://github.com/AIMOVE/TSE-ARF.
Collapse
Affiliation(s)
- Xianjun Tang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Longfei Luo
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Pérez-Montaño F, Jiménez-Guerrero I, Tamir-Ariel D, Burdman S. Virulence-Related Assays for Investigation of the Acidovorax citrulli-Cucurbitaceae Pathosystem. Methods Mol Biol 2024; 2751:81-94. [PMID: 38265711 DOI: 10.1007/978-1-0716-3617-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acidovorax citrulli is one of the most important pathogens of cucurbit crops, mainly melon and watermelon. Although A. citrulli is able to infect all aerial parts of the plant, fruits are highly sensitive to the bacterium. Therefore, the disease is known as bacterial fruit blotch (BFB). The unavailability of effective tools for managing BFB, including the lack of resistant varieties, exacerbates the threat this disease poses to the cucurbit industry. However, despite the economic importance of BFB, still little is known about basic aspects of A. citrulli-plant interactions. Here, we present diverse techniques that have recently been developed for investigation of basic aspects of BFB, including identification of virulence determinants of the pathogen.
Collapse
Affiliation(s)
| | | | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Jiménez-Guerrero I, Sonawane M, Eckshtain-Levi N, Tuang ZK, da Silva GM, Pérez-Montaño F, Leibman-Markus M, Gupta R, Noda-Garcia L, Bar M, Burdman S. Natural variation in a short region of the Acidovorax citrulli type III-secreted effector AopW1 is associated with differences in cytotoxicity and host adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:516-540. [PMID: 37864805 DOI: 10.1111/tpj.16507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monica Sonawane
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Eckshtain-Levi
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Za Khai Tuang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez-Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Microbiology, University of Seville, Seville, Spain
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Jiménez-Guerrero I, López-Baena FJ, Medina C. Microscope Subcellular Localization of Plant-Interacting Bacterial Effectors in Animal Cell Cultures. Methods Mol Biol 2024; 2751:165-178. [PMID: 38265716 DOI: 10.1007/978-1-0716-3617-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Eukaryote-interacting bacteria have developed along the evolution of an arsenal of tools to interact with potential hosts and to evade their defensive responses. Among these tools, the effector proteins are gaining a special importance due to the high diversity of molecular actions that they play in the host cell, with the final aim of taking the control over the cell. Bacteria inject these effectors into the cytosol of the host cells through distinct ways, as the type III secretion system. The study of the effectors' molecular roles inside the host cell is challenging, due in part to the lack of traceability of such proteins once they are delivered by the bacteria. Here, we describe in depth a methodology that combines the increase of the bacterial effector concentration by protein expression systems with the use of heterologous hosts to facilitate the visualization of the subcellular targeting of the effector inside the host cell by fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Carlos Medina
- Department of Microbiology, University of Seville, Seville, Spain.
| |
Collapse
|
8
|
Zhao Z, Hu Y, Hu Y, White AP, Wang Y. Features and algorithms: facilitating investigation of secreted effectors in Gram-negative bacteria. Trends Microbiol 2023; 31:1162-1178. [PMID: 37349207 DOI: 10.1016/j.tim.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Gram-negative bacteria deliver effector proteins through type III, IV, or VI secretion systems (T3SSs, T4SSs, and T6SSs) into host cells, causing infections and diseases. In general, effector proteins for each of these distinct secretion systems lack homology and are difficult to identify. Sequence analysis has disclosed many common features, helping us to understand the evolution, function, and secretion mechanisms of the effectors. In combination with various algorithms, the known common features have facilitated accurate prediction of new effectors. Ensemblers or integrated pipelines achieve a better prediction of performance, which combines multiple computational models or modules with multidimensional features. Natural language processing (NLP) models also show the merits, which could enable discovery of novel features and, in turn, facilitate more precise effector prediction, extending our knowledge about each secretion mechanism.
Collapse
Affiliation(s)
- Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Aaron P White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen 518060, China; Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
9
|
Yang L, Zhao M, Zhang X, Jiang J, Fei N, Ji W, Ye Y, Guan W, Yang Y, Zhao T. Acidovorax citrulli type III effector AopU interferes with plant immune responses and interacts with a watermelon E3 ubiquitin ligase. Front Microbiol 2023; 14:1275032. [PMID: 37876782 PMCID: PMC10590900 DOI: 10.3389/fmicb.2023.1275032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Acidovorax citrulli is a seed-borne bacterium that causes bacterial fruit blotch of watermelon and other cucurbit plants worldwide. It uses a type III secretion system to inject type III effectors (T3Es) into plant cells, which affect the host immune responses and facilitate pathogen colonization. However, the current understanding of the specific molecular mechanisms and targets of these effectors in A. citrulli is limited. In this study, we characterized a novel T3E called AopU in A. citrulli group II strain Aac5, which shares homology with XopU in Xanthomonas oryzae. The Agrobacterium-mediated gene transient expression system was used to study the effect of AopU on host immunity. The results showed that AopU localized on the cell membrane and nucleus of Nicotiana benthamiana, inhibited reactive oxygen species burst induced by flg22 and the expression of marker genes associated with pathogen-associated molecular pattern-triggered immunity, but activated salicylic acid and jasmonic acid signal pathways. Further investigations revealed that AopU interacts with E3 ubiquitin ligase ClE3R in watermelon, both in vitro and in vivo. Interestingly, the deletion of aopU did not affect the virulence of A. citrulli, suggesting that AopU may have functional redundancy with other effectors in terms of its role in virulence. Collectively, these findings provide new insights into the mechanism of plant immune responses regulated by A. citrulli T3Es.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuoya Fei
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
10
|
Kan Y, Zhang Y, Lin W, Dong T. Differential plant cell responses to Acidovorax citrulli T3SS and T6SS reveal an effective strategy for controlling plant-associated pathogens. mBio 2023; 14:e0045923. [PMID: 37288971 PMCID: PMC10470598 DOI: 10.1128/mbio.00459-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Acidovorax citrulli is a gram-negative plant pathogen that employs the type Ⅲ secretion system (T3SS) to infect cucurbit crops and cause bacterial fruit blotch. This bacterium also possesses an active type Ⅵ secretion system (T6SS) with strong antibacterial and antifungal activities. However, how plant cells respond to these two secretion systems and whether there is any cross talk between T3SS and T6SS during infection remain unknown. Here, we employ transcriptomic analysis to compare cellular responses to the T3SS and the T6SS during in planta infection and report distinctive effects on multiple pathways. The T3SS-mediated differentially expressed genes were enriched in the pathways of phenylpropanoid biosynthesis, plant-pathogen interaction, MAPK signaling pathway, and glutathione metabolism, while the T6SS uniquely affected genes were related to photosynthesis. The T6SS does not contribute to the in planta virulence of A. citrulli but is critical for the survival of the bacterium when mixed with watermelon phyllosphere bacteria. In addition, T3SS-mediated virulence is independent of the T6SS, and the inactivation of the T3SS does not affect the T6SS-mediated competition against a diverse set of bacterial pathogens that commonly contaminate edible plants or directly infect plants. A T6SS-active T3SS-null mutant (Acav) could inhibit the growth of Xanthomonas oryzae pv. oryzae significantly both in vitro and in vivo and also reduce symptoms of rice bacterial blight. In conclusion, our data demonstrate the T6SS in A. citrulli is nonpathogenic to the plant host and can be harnessed as a pathogen killer against plant-associated bacteria. IMPORTANCE Chemical pesticides are widely used to protect crops from various pathogens. Still, their extensive use has led to severe consequences, including drug resistance and environmental contamination. Here, we show that an engineered T6SS-active, but avirulent mutant of Acidovorax citrulli has strong inhibition capabilities against several pathogenic bacteria, demonstrating an effective strategy that is an alternative to chemical pesticides for sustainable agricultural practices.
Collapse
Affiliation(s)
- Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Yang Y, Fei N, Ji W, Qiao P, Yang L, Liu D, Guan W, Zhao T. pilA Gene Contributes to Virulence, Motility, Biofilm Formation, and Interspecific Competition of Bacteria in Acidovorax citrulli. Microorganisms 2023; 11:1806. [PMID: 37512977 PMCID: PMC10385852 DOI: 10.3390/microorganisms11071806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Acidovorax citrulli, the causative agent of bacterial fruit blotch, can be divided into two main groups based on factors such as pathogenicity and host species preference. PilA is an important structural and functional component of type IV pili (T4P). Previous studies have found significant differences in pilA DNA sequences between group I and group II strains of A. citrulli. In this study, we characterized pilA in the group I strain pslb65 and the group II strain Aac5. pilA mutants, complementation strains, and cross-complementation strains were generated, and their biological phenotypes were analyzed to identify functional differences between pilA in the two groups. pilA deletion mutants (pslb65-ΔpilA and Aac5-ΔpilA) showed significantly reduced pathogenicity compared with the wild-type (WT) strains; pslb65-ΔpilA also completely lost twitching motility, whereas Aac5-ΔpilA only partially lost motility. In King's B medium, there were no significant differences in biofilm formation between pslb65-ΔpilA and WT pslb65, but Aac5-ΔpilA showed significantly reduced biofilm formation compared to WT Aac5. In M9 minimal medium, both mutants showed significantly lower biofilm formation compared to the corresponding WT strains, although biofilm formation was recovered in the complementation strains. The biofilm formation capacity was somewhat recovered in the cross-complementation strains but remained significantly lower than in the WT strains. The interspecies competitive abilities of pslb65-ΔpilA and Aac5-ΔpilA were significantly lower than in the WT strains; Aac5-ΔpilA was more strongly competitive than pslb65-ΔpilA, and the complementation strains recovered competitiveness to WT levels. Furthermore, the cross-complementation strains showed stronger competitive abilities than the corresponding WT strains. The relative expression levels of genes related to T4P and the type VI secretion system were then assessed in the pilA mutants via quantitative PCR. The results showed significant differences in the relative expression levels of multiple genes in pslb65-ΔpilA and Aac5-ΔpilA compared to the corresponding WT stains. This indicated the presence of specific differences in pilA function between the two A. citrulli groups, but the regulatory mechanisms involved require further study.
Collapse
Affiliation(s)
- Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Nuoya Fei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
| | - Dehua Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
12
|
Wagner N, Ben-Meir D, Teper D, Pupko T. Complete genome sequence of an Israeli isolate of Xanthomonas hortorum pv. pelargonii strain 305 and novel type III effectors identified in Xanthomonas. FRONTIERS IN PLANT SCIENCE 2023; 14:1155341. [PMID: 37332699 PMCID: PMC10275491 DOI: 10.3389/fpls.2023.1155341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Xanthomonas hortorum pv. pelargonii is the causative agent of bacterial blight in geranium ornamental plants, the most threatening bacterial disease of this plant worldwide. Xanthomonas fragariae is the causative agent of angular leaf spot in strawberries, where it poses a significant threat to the strawberry industry. Both pathogens rely on the type III secretion system and the translocation of effector proteins into the plant cells for their pathogenicity. Effectidor is a freely available web server we have previously developed for the prediction of type III effectors in bacterial genomes. Following a complete genome sequencing and assembly of an Israeli isolate of Xanthomonas hortorum pv. pelargonii - strain 305, we used Effectidor to predict effector encoding genes both in this newly sequenced genome, and in X. fragariae strain Fap21, and validated its predictions experimentally. Four and two genes in X. hortorum and X. fragariae, respectively, contained an active translocation signal that allowed the translocation of the reporter AvrBs2 that induced the hypersensitive response in pepper leaves, and are thus considered validated novel effectors. These newly validated effectors are XopBB, XopBC, XopBD, XopBE, XopBF, and XopBG.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniella Ben-Meir
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Jiménez-Guerrero I, López-Baena FJ, Medina C. Multitask Approach to Localize Rhizobial Type Three Secretion System Effector Proteins Inside Eukaryotic Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112133. [PMID: 37299112 DOI: 10.3390/plants12112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Rhizobia can establish mutually beneficial interactions with legume plants by colonizing their roots to induce the formation of a specialized structure known as a nodule, inside of which the bacteria are able to fix atmospheric nitrogen. It is well established that the compatibility of such interactions is mainly determined by the bacterial recognition of flavonoids secreted by the plants, which in response to these flavonoids trigger the synthesis of the bacterial Nod factors that drive the nodulation process. Additionally, other bacterial signals are involved in the recognition and the efficiency of this interaction, such as extracellular polysaccharides or some secreted proteins. Some rhizobial strains inject proteins through the type III secretion system to the cytosol of legume root cells during the nodulation process. Such proteins, called type III-secreted effectors (T3E), exert their function in the host cell and are involved, among other tasks, in the attenuation of host defense responses to facilitate the infection, contributing to the specificity of the process. One of the main challenges of studying rhizobial T3E is the inherent difficulty in localizing them in vivo in the different subcellular compartments within their host cells, since in addition to their low concentration under physiological conditions, it is not always known when or where they are being produced and secreted. In this paper, we use a well-known rhizobial T3E, named NopL, to illustrate by a multitask approach where it localizes in heterologous hosts models, such as tobacco plant leaf cells, and also for the first time in transfected and/or Salmonella-infected animal cells. The consistency of our results serves as an example to study the location inside eukaryotic cells of effectors in distinct hosts with different handling techniques that can be used in almost every research laboratory.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | - Carlos Medina
- Departamento de Microbiología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain
| |
Collapse
|
14
|
Qiao P, Zhao M, Guan W, Walcott R, Ye Y, Yang Y, Zhao T. A putative multi-sensor hybrid histidine kinase, BarA Ac , inhibits the expression of the type III secretion system regulator HrpG in Acidovorax citrulli. Front Microbiol 2022; 13:1064577. [PMID: 36532489 PMCID: PMC9748350 DOI: 10.3389/fmicb.2022.1064577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, severely damages watermelon, melon, and other cucurbit crops worldwide. Although many virulence determinants have been identified in A. citrulli, including swimming motility, twitching motility, biofilm formation, and the type III secretion system (T3SS), research on their regulation is lacking. To study virulence regulation mechanisms, we found a putative histidine kinase BarA Ac that may be related to the T3SS regulator HrpG in A. citrulli. We deleted and characterized barAAc (Aave_2063) in A. citrulli Aac5 strain. Compared to the wild-type Aac5, virulence and early proliferation of barAAc mutant in host watermelon cotyledons were significantly increased, and induction of hypersensitive response in non-host tobacco was accelerated, while biofilm formation and swimming motility were significantly reduced. In addition, the transcriptomic analysis revealed that the expression of many T3SS-related genes was upregulated in the ΔbarAAc deletion mutant when cultured in KB medium. Meanwhile, the ΔbarAAc deletion mutant showed increased accumulation of the T3SS regulator HrpG in KB medium, which may account for the increased deployment of T3SS. This suggests that the putative histidine kinase BarA Ac is able to repress the T3SS expression by inhibiting HrpG in the KB medium, which appears to be important for rational energy allocation. In summary, our research provides further understanding of the regulatory network of A. citrulli virulence.
Collapse
Affiliation(s)
- Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Wagner N, Alburquerque M, Ecker N, Dotan E, Zerah B, Pena MM, Potnis N, Pupko T. Natural language processing approach to model the secretion signal of type III effectors. FRONTIERS IN PLANT SCIENCE 2022; 13:1024405. [PMID: 36388586 PMCID: PMC9659976 DOI: 10.3389/fpls.2022.1024405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Type III effectors are proteins injected by Gram-negative bacteria into eukaryotic hosts. In many plant and animal pathogens, these effectors manipulate host cellular processes to the benefit of the bacteria. Type III effectors are secreted by a type III secretion system that must "classify" each bacterial protein into one of two categories, either the protein should be translocated or not. It was previously shown that type III effectors have a secretion signal within their N-terminus, however, despite numerous efforts, the exact biochemical identity of this secretion signal is generally unknown. Computational characterization of the secretion signal is important for the identification of novel effectors and for better understanding the molecular translocation mechanism. In this work we developed novel machine-learning algorithms for characterizing the secretion signal in both plant and animal pathogens. Specifically, we represented each protein as a vector in high-dimensional space using Facebook's protein language model. Classification algorithms were next used to separate effectors from non-effector proteins. We subsequently curated a benchmark dataset of hundreds of effectors and thousands of non-effector proteins. We showed that on this curated dataset, our novel approach yielded substantially better classification accuracy compared to previously developed methodologies. We have also tested the hypothesis that plant and animal pathogen effectors are characterized by different secretion signals. Finally, we integrated the novel approach in Effectidor, a web-server for predicting type III effector proteins, leading to a more accurate classification of effectors from non-effectors.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael Alburquerque
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Ecker
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Edo Dotan
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben Zerah
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Mendonca Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Acidovorax citrulli Effector AopV Suppresses Plant Immunity and Interacts with Aromatic Dehydratase ADT6 in Watermelon. Int J Mol Sci 2022; 23:ijms231911719. [PMID: 36233021 PMCID: PMC9570411 DOI: 10.3390/ijms231911719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a disease of cucurbit plants caused by Acidovorax citrulli. Although A. citrulli has great destructive potential, the molecular mechanisms of pathogenicity of A. citrulli are not clear, particularly with regard to its type III secreted effectors. In this study, we characterized the type III secreted effector protein, AopV, from A. citrulli strain Aac5. We show that AopV significantly inhibits reactive oxygen species and the expression of PTI marker genes, and helps the growth of Pseudomonas syringae D36E in Nicotiana benthamiana. In addition, we found that the aromatic dehydratase ADT6 from watermelon was a target of AopV. AopV interacts with ADT6 in vivo and in vitro. Subcellular localization indicated ADT6 and AopV were co-located at the cell membrane. Together, our results reveal that AopV suppresses plant immunity and targets ADT6 in the cell membrane. These findings provide an new characterization of the molecular interaction of A. citrulli effector protein AopV with host cells.
Collapse
|
17
|
Ji W, Zhao M, Fei N, Yang L, Qiao P, Walcott R, Yang Y, Zhao T. Essential Acidovorax citrulli Virulence Gene hrpE Activates Host Immune Response against Pathogen. Int J Mol Sci 2022; 23:ijms23169144. [PMID: 36012409 PMCID: PMC9409176 DOI: 10.3390/ijms23169144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Ac) is a devastating watermelon disease that severely impacts the global watermelon industry. Like other Gram-negative bacteria, the type three secretion system (T3SS) is the main pathogenicity factor of A. citrulli. The T3SS apparatus gene hrpE codes for the Hrp pilus and serves as a conduit to secret effector proteins into host cells. In this study, we found that the deletion of hrpE in A. citrulli results in the loss of pathogenicity on hosts and the hypersensitive response on non-hosts. In addition, the A. citrulli hrpE mutant showed a reduction in in vitro growth, in planta colonization, swimming and twitching motility, and displayed increases in biofilm formation ability compared to the wild type. However, when HrpE was transiently expressed in hosts, the defense responses, including reactive oxygen species bursts, callose deposition, and expression of defense-related genes, were activated. Thus, the A. Citrulli growth in HrpE-pretreated hosts was suppressed. These results indicated that HrpE is essential for A. citrulli virulence but can also be used by hosts to help resist A. citrulli. Our findings provide a better understanding of the T3SS pathogenesis in A. citrulli, thus providing a molecular basis for biopesticide development, and facilitating the effective control of BFB.
Collapse
Affiliation(s)
- Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Nuoya Fei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| |
Collapse
|
18
|
Host-specific activation of a pathogen effector Aave_4606 from Acidovorax citrulli, the causal agent for bacterial fruit blotch. Biochem Biophys Res Commun 2022; 616:41-48. [DOI: 10.1016/j.bbrc.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
|
19
|
Rosenberg T, Jiménez-Guerrero I, Tamir-Ariel D, Yarnitzky T, Burdman S. The GDSL-Lipolytic Enzyme Lip1 Is Required for Full Virulence of the Cucurbit Pathogenic Bacterium Acidovorax citrulli. Microorganisms 2022; 10:microorganisms10051016. [PMID: 35630458 PMCID: PMC9147443 DOI: 10.3390/microorganisms10051016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial fruit blotch caused by Acidovoraxcitrulli is a serious disease of cucurbit crops. Here we report characterization of a mutant strain of A. citrulli M6 defective in lip1, a gene encoding a lipolytic enzyme. The M6-lip1- mutant was detected in a mutant library screen aimed at identifying M6 mutants with altered levels of twitching motility. In this screen M6-lip1- was the only mutant that showed significantly larger twitching motility haloes around colonies than wild-type M6. Sequence analyses indicated that lip1 encodes a member of the GDSL family of secreted lipolytic enzymes. In line with this finding, lipolytic assays showed that the supernatants of M6-lip1- had lower lipolytic activity as compared with those of wild-type M6 and a lip1-complemented strain. The mutant was also affected in swimming motility and had compromised virulence on melon seedlings and on Nicotiana benthamiana leaves relative to wild-type and complemented strains. Lip1 contains a predicted N-terminal signal sequence for type II secretion. Evidence from our study confirms Lip1 is indeed secreted in a type II secretion-dependent manner, and this is required for full virulence of A. citrulli. To the best of our knowledge this is the first study reporting contribution of lipolytic activity to virulence of a plant-pathogenic Acidovorax species.
Collapse
Affiliation(s)
- Tally Rosenberg
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Tali Yarnitzky
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Correspondence: ; Tel.: +972-8-9489369
| |
Collapse
|
20
|
Wagner N, Avram O, Gold-Binshtok D, Zerah B, Teper D, Pupko T. Effectidor: an automated machine-learning-based web server for the prediction of type-III secretion system effectors. Bioinformatics 2022; 38:2341-2343. [PMID: 35157036 DOI: 10.1093/bioinformatics/btac087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Type-III secretion systems are utilized by many Gram-negative bacteria to inject type-3 effectors (T3Es) to eukaryotic cells. These effectors manipulate host processes for the benefit of the bacteria and thus promote disease. They can also function as host-specificity determinants through their recognition as avirulence proteins that elicit immune response. Identifying the full effector repertoire within a set of bacterial genomes is of great importance to develop appropriate treatments against the associated pathogens. RESULTS We present Effectidor, a user-friendly web server that harnesses several machine-learning techniques to predict T3Es within bacterial genomes. We compared the performance of Effectidor to other available tools for the same task on three pathogenic bacteria. Effectidor outperformed these tools in terms of classification accuracy (area under the precision-recall curve above 0.98 in all cases). AVAILABILITY AND IMPLEMENTATION Effectidor is available at: https://effectidor.tau.ac.il, and the source code is available at: https://github.com/naamawagner/Effectidor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Gold-Binshtok
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Zerah
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Wang Y, Zhao Y, Xia L, Chen L, Liao Y, Chen B, Liu Y, Gong W, Tian Y, Hu B. yggS Encoding Pyridoxal 5'-Phosphate Binding Protein Is Required for Acidovorax citrulli Virulence. Front Microbiol 2022; 12:783862. [PMID: 35087487 PMCID: PMC8787154 DOI: 10.3389/fmicb.2021.783862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5′-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic β-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.
Collapse
Affiliation(s)
- Yuanjie Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing, China
| | - Liming Xia
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Lin Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yiyang Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Province, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms 2022; 10:microorganisms10020260. [PMID: 35208715 PMCID: PMC8876096 DOI: 10.3390/microorganisms10020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria-host interactions are characterized by the delivery of bacterial virulence factors, i.e., effectors, into host cells where they counteract host immunity and exploit host responses allowing bacterial survival and spreading. These effectors are translocated into host cells by means of dedicated secretion systems such as the type 3 secretion system (T3SS). A comprehensive understanding of effector translocation in a spatio-temporal manner is of critical importance to gain insights into an effector’s mode of action. Various approaches have been developed to understand timing and order of effector translocation, quantities of translocated effectors and their subcellular localization upon translocation into host cells. Recently, the existing toolset has been expanded by newly developed state-of-the art methods to monitor bacterial effector translocation and dynamics. In this review, we elaborate on reported methods and discuss recent advances and shortcomings in this area of tracking bacterial effector translocation.
Collapse
|
23
|
Abstract
Various Gram-negative bacteria use secretion systems to secrete effector proteins that manipulate host biochemical pathways to their benefit. We and others have previously developed machine-learning algorithms to predict novel effectors. Specifically, given a set of known effectors and a set of known non-effectors, the machine-learning algorithm extracts features that distinguish these two protein groups. In the training phase, the machine learning learns how to best combine the features to separate the two groups. The trained machine learning is then applied to open reading frames (ORFs) with unknown functions, resulting in a score for each ORF, which is its likelihood to be an effector. We developed Effectidor, a web server for predicting type III effectors. In this book chapter, we provide a step-by-step introduction to the application of Effectidor, from selecting input data to analyzing the obtained predictions.
Collapse
Affiliation(s)
- Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Rai R, Pasion J, Majumdar T, Green CE, Hind SR. Genome Sequencing and Functional Characterization of Xanthomonas cucurbitae, the Causal Agent of Bacterial Spot Disease of Cucurbits. PHYTOPATHOLOGY 2021; 111:1289-1300. [PMID: 33734871 DOI: 10.1094/phyto-06-20-0228-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial leaf spot disease caused by Xanthomonas cucurbitae has severely affected the pumpkin industries in the Midwestern region of United States, with the bacteria mainly infecting pumpkin leaves and fruits, and leading to significant yield losses. In this study, we utilized genomics and genetics approaches to elucidate X. cucurbitae molecular mechanisms of pathogenesis during interaction with its host. We generated the first reference-quality whole-genome sequence of the X. cucurbitae type isolate and compared with other Xanthomonas species, X. cucurbitae has a smaller genome size with fewer virulence-related genes. RNA-seq analysis of X. cucurbitae under plant-mimicking media conditions showed altered transcriptional responses, with upregulation of virulence genes and downregulation of cellular homeostasis genes. Additionally, characterization of key virulence genes using gene deletion methods revealed that both type II enzymes and type III effectors are necessary for X. cucurbitae to cause infection in the pumpkin host.
Collapse
Affiliation(s)
- Rikky Rai
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Julius Pasion
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
25
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
26
|
Kim M, Lee J, Heo L, Lee SJ, Han SW. Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli. THE PLANT PATHOLOGY JOURNAL 2021; 37:36-46. [PMID: 33551695 PMCID: PMC7847757 DOI: 10.5423/ppj.oa.12.2020.0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/05/2023]
Abstract
Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB) in watermelon, a disease that poses a serious threat to watermelon production. Because of the lack of resistant cultivars against BFB, virulence factors or mechanisms need to be elucidated to control the disease. Glycerol-3-phosphate dehydrogenase is the enzyme involved in glycerol production from glucose during glycolysis. In this study, we report the functions of a putative glycerol-3-phosphate dehydrogenase in Ac (GlpdAc) using comparative proteomic analysis and phenotypic observation. A glpdAc knockout mutant, AcΔglpdAc(EV), lost virulence against watermelon in two pathogenicity tests. The putative 3D structure and amino acid sequence of GlpdAc showed high similarity with glycerol-3-phosphate dehydrogenases from other bacteria. Comparative proteomic analysis revealed that many proteins related to various metabolic pathways, including carbohydrate metabolism, were affected by GlpdAc. Although AcΔglpdAc(EV) could not use glucose as a sole carbon source, it showed growth in the presence of glycerol, indicating that GlpdAc is involved in glycolysis. AcΔglpdAc(EV) also displayed higher cell-to-cell aggregation than the wild-type bacteria, and tolerance to osmotic stress and ciprofloxacin was reduced and enhanced in the mutant, respectively. These results indicate that GlpdAc is involved in glycerol metabolism and other mechanisms, including virulence, demonstrating that the protein has pleiotropic effects. Our study expands the understanding of the functions of proteins associated with virulence in Ac.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Lynn Heo
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
- Co-corresponding authors. S. J. Lee, Phone) +82-31-670-3356, FAX) +82-2-675-3108, E-mail) , S.-W. Han, Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail) , ORCID, Sang Jun Lee https://orcid.org/0000-0002-2803-753X, Sang-Wook Han https://orcid.org/0000-0002-0893-1438
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong 7546, Korea
- Co-corresponding authors. S. J. Lee, Phone) +82-31-670-3356, FAX) +82-2-675-3108, E-mail) , S.-W. Han, Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail) , ORCID, Sang Jun Lee https://orcid.org/0000-0002-2803-753X, Sang-Wook Han https://orcid.org/0000-0002-0893-1438
| |
Collapse
|
27
|
Zhang X, Yang Y, Zhao M, Yang L, Jiang J, Walcott R, Yang S, Zhao T. Acidovorax citrulli Type III Effector AopP Suppresses Plant Immunity by Targeting the Watermelon Transcription Factor WRKY6. FRONTIERS IN PLANT SCIENCE 2020; 11:579218. [PMID: 33329640 PMCID: PMC7718035 DOI: 10.3389/fpls.2020.579218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB), and BFB poses a threat to global watermelon production. Despite its economic importance, the molecular mechanisms underlying Ac pathogenicity and virulence are not well understood, particularly with regard to its type III secreted effectors. We identify a new effector, AopP, in Ac and confirm its secretion and translocation. AopP suppresses reactive oxygen species burst and salicylic acid (SA) content and significantly contributes to virulence. Interestingly, AopP interacts with a watermelon transcription factor, ClWRKY6, in vivo and in vitro. ClWRKY6 shows typical nuclear localization, and AopP and ClWRKY6 co-localize in the nucleus. Ac infection, SA, and the pathogen-associated molecular pattern flg22 Ac promote ClWRKY6 production, suggesting that ClWRKY6 is involved in plant immunity and SA signaling. Furthermore, ClWRKY6 positively regulates PTI and SA production when expressed in Nicotiana benthamiana. Importantly, AopP reduces ClWRKY6 mRNA and ClWRKY6 protein levels, suggesting that AopP suppresses plant immunity by targeting ClWRKY6. In summary, we identify a novel effector associated with the virulence mechanism of Ac, which interacts with the transcription factor of the natural host, watermelon. The findings of this study provide insights into the mechanisms of watermelon immune responses and may facilitate molecular breeding for bacterial fruit blotch resistance.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Shanshan Yang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Zhang X, Zhao M, Jiang J, Yang L, Yang Y, Yang S, Walcott R, Qiu D, Zhao T. Identification and Functional Analysis of AopN, an Acidovorax Citrulli Effector that Induces Programmed Cell Death in Plants. Int J Mol Sci 2020; 21:E6050. [PMID: 32842656 PMCID: PMC7504669 DOI: 10.3390/ijms21176050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 01/23/2023] Open
Abstract
Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, seriously affects watermelon and other cucurbit crops, resulting in significant economic losses. However, the pathogenicity mechanism of A. citrulli is not well understood. Plant pathogenic bacteria often suppress the plant immune response by secreting effector proteins. Thus, identifying A. citrulli effector proteins and determining their functions may improve our understanding of the underlying pathogenetic mechanisms. In this study, a novel effector, AopN, which is localized on the cell membrane of Nicotiana benthamiana, was identified. The functional analysis revealed that AopN significantly inhibited the flg22-induced reactive oxygen species burst. AopN induced a programmed cell death (PCD) response. Unlike its homologous protein, the ability of AopN to induce PCD was dependent on two motifs of unknown functions (including DUP4129 and Cpta_toxin), but was not dependent on LXXLL domain. More importantly, the virulence of the aopN mutant of A. citrulli in N. benthamiana significantly decreased, indicating that it was a core effector. Further analysis revealed that AopN interacted with watermelon ClHIPP and ClLTP, which responds to A. citrulli strain Aac5 infection at the transcription level. Collectively, these findings indicate that AopN suppresses plant immunity and activates the effector-triggered immunity pathway.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA; (M.Z.); (R.W.)
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA; (M.Z.); (R.W.)
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| |
Collapse
|
29
|
Kim M, Lee J, Heo L, Han SW. Putative Bifunctional Chorismate Mutase/Prephenate Dehydratase Contributes to the Virulence of Acidovorax citrulli. FRONTIERS IN PLANT SCIENCE 2020; 11:569552. [PMID: 33101336 PMCID: PMC7546022 DOI: 10.3389/fpls.2020.569552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/09/2020] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli (Ac) is a plant pathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops. Despite its importance in the cucurbit industry, resistant cultivars/lines against BFB have not yet been identified. Therefore, there is a need to characterize the virulence factors/mechanisms in Ac to control the disease. Chorismate mutase, a key enzyme in the shikimate pathway, produces aromatic amino acids. Here, we report the functions of putative bifunctional chorismate mutase/prephenate dehydratase in Ac (CmpAc) determined by proteomic analysis and phenotypic assays. Ac strain lacking CmpAc, AcΔcmpAc(EV), were significantly less virulent on watermelon in the germinated-seed inoculation and leaf infiltration assays. Sequence analysis revealed that CmpAc possesses two distinct domains: chorismate mutase and prephenate dehydratase, indicating that CmpAc is a bifunctional protein. Auxotrophic assays demonstrated that CmpAc is required for the biosynthesis of phenylalanine, but not tyrosine. The comparative proteomic analysis revealed that CmpAc is mostly involved in cell wall/membrane/envelop biogenesis. Furthermore, AcΔcmpAc(EV) showed reduced twitching halo production and enhanced biofilm formation. In addition, AcΔcmpAc(EV) was less tolerant to osmotic stress but more tolerant to antibiotics (polymyxin B). Thus, our study provides new insights into the functions of a putative bifunctional protein related to virulence in Ac.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Lynn Heo
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|