1
|
Guan H, Zhang P, Park RF, Ding Y. Genomics Research on the Road of Studying Biology and Virulence of Cereal Rust Fungi. MOLECULAR PLANT PATHOLOGY 2025; 26:e70082. [PMID: 40181494 PMCID: PMC11968332 DOI: 10.1111/mpp.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Rust fungi are highly destructive pathogens that pose a significant threat to crop production worldwide, especially cereals. Obligate biotrophy and, in many cases, complex life cycles make rust fungi particularly challenging to study. However, recent rapid advances in sequencing technologies and genomic analysis tools have revolutionised rust fungal research. It is anticipated that the increasing availability and ongoing substantial improvements in genome assemblies will propel the field of rust biology into the post-genomic era, instigating a cascade of research endeavours encompassing multi-omics and gene discoveries. This is especially the case for many cereal rust pathogens, for which continental-scale studies of virulence have been conducted over many years and historical collections of viable isolates have been sequenced and assembled. Genomic analysis plays a crucial role in uncovering the underlying causes of the high variability of virulence and the complexity of population dynamics in rust fungi. Here, we provide an overview of progress in rust genomics, discuss the strategies employed in genomic analysis, and elucidate the strides that will drive cereal rust biology into the post-genomic era.
Collapse
Affiliation(s)
- Haixia Guan
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Peng Zhang
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Yi Ding
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| |
Collapse
|
2
|
Ma X, Zhang Z, Deng R, Liu N, Jiang H, Kang Z, Liu J. Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:380-392. [PMID: 39725864 DOI: 10.1021/acs.jafc.4c10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection. However, the functions and molecular mechanisms of the CWDEs from Pst remain unclear. In this study, we identified a secreted xylanase, named PstXyn1, with the GH10 domain. PstXyn1 was significantly up-regulated at the early infection stage of Pst. The signal peptide of PstXyn1 was confirmed to be functional. The purified PstXyn1 showed detectable xylanase activity. In addition, we found that PstXyn1-silenced wheat plants exhibited broad-spectrum resistance against multiple Pst pathotypes. Colloidal gold labeling and transcriptome sequencing analyses revealed that PstXyn1 contributed to xylan degradation in host cell walls and suppressed the expression of defense-related genes. Conclusively, our results indicate that PstXyn1 is secreted as an important virulence factor to overcome host cell wall barriers and compromise immune responses for fungal invasion, providing potential targets for improving wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaowei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoqiong Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nian Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Pan Q, Zhang Y, Yang Y, Qiao Y, Qian Y, Wang J, Wang X, Kang Z, Liu J. The Puccinia striiformis effector Pst11215 manipulates mitochondria to suppress host immunity by promoting TaVDIP1-mediated ubiquitination of TaVDAC1. THE NEW PHYTOLOGIST 2024; 244:1961-1978. [PMID: 39307959 DOI: 10.1111/nph.20146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Mitochondria-induced cell death is closely correlated with plant immune responses against pathogens. However, the molecular mechanisms by which pathogens manipulate mitochondria to suppress host resistance remain poorly understood. In this study, a haustorium-specific effector Pst11215 from the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) was characterized by host-induced gene silencing. The interaction partners regulated by Pst11215 were screened using the yeast two-hybrid system. In addition, Pst11215-mediated immune regulation modes were further determined. The results showed that Pst11215 was required for Pst virulence. Pst11215 interacted with the wheat voltage-dependent anion channel TaVDAC1, the negative regulator of wheat resistance to stripe rust, in mitochondria. Furthermore, the E3 ubiquitin ligase TaVDIP1 targeted and ubiquitinated TaVDAC1, which can be promoted by Pst11215. TaVDIP1 conferred enhanced wheat susceptibility to Pst by cooperating with TaVDAC1. Overexpression of TaVDIP1 reduced reactive oxygen species (ROS) accumulation and abnormal mitochondria. Our study revealed that Pst11215 functions as an important pathogenicity factor secreted to the host mitochondria to compromise wheat resistance to Pst possibly by facilitating TaVDIP1-mediated ubiquitination of TaVDAC1, thereby protecting mitochondria from ROS-induced impairment. This research unveils a novel regulation mode of effectors hijacking host mitochondria to contribute to pathogen infection.
Collapse
Affiliation(s)
- Qinglin Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yueyang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yixin Qiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingrui Qian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinmian Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
4
|
Shu W, Yuan J, Zhang J, Wang S, Ba Q, Li G, Zhang G. The stripe rust effector Pst3180.3 inhibits the transcriptional activity of TaMYB4L to modulate wheat immunity and analyzes the key active sites of the interaction conformation. Int J Biol Macromol 2024; 280:135584. [PMID: 39270915 DOI: 10.1016/j.ijbiomac.2024.135584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) has a wide range and serious damage, which severely threatens global wheat production. In this study, we focused on an effector protein Pst3180.3, which was induced to be highly expressed during the Pst infection stage. The N-terminal 19 amino acid of Pst3180.3 was verified to function as a signal peptide and transferred to cytoplasm and nucleus of wheat following Pst infection. Transient overexpression of Pst3180.3 in Nicotiana benthamiana inhibited programmed cell death triggered via BAX. The instantaneous silencing of Pst3180.3 by BSMV- HIGS significantly reduced the number of uredinia and increased accumulation of reactive oxygen species. Those results indicated that Pst3180.3 is an important pathogenic factor of Pst. Interaction of Pst3180.3 with a transcription factor TaMYB4L in host was confirmed through yeast two-hybrid, luciferase complementation, and co-immunoprecipitation. Virus-induced gene silencing of TaMYB4L weakened the resistance to Pst, indicated that TaMYB4L may be involved in the positive regulation of plant immunity. Dual-luciferase assays revealed that Pst3180.3 inhibited the transcriptional activity of TaMYB4L. Meanwhile, molecular docking analysis identified the key residue sites for the interaction and binding between Pst3180.3 and MYB4L. Those results demonstrated that Pst3180.3 binds to TaMYB4L and interacts to inhibit wheat resistance to Pst infection.
Collapse
Affiliation(s)
- Weixue Shu
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Jiawei Yuan
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Jing Zhang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Shenglong Wang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Qingsong Ba
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China
| | - Guiping Li
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China.
| | - Gensheng Zhang
- College of Life Science, Huaibei Normal University, Anhui Key Laboratory of Plant Resources and Biology, Huaibei Key Laboratory of Crop Genetic Improvement and Efficient Green Safe Production, Huaibei, Anhui, PR China; State Key Laboratory of Crop Stress Resistance and High-Effeciency Production, NWAFU, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
6
|
Yan T, Wang Y, Cui G, Wansee S, Wang X, Guo Y, Zhao H, Wang N, Kang Z, Tang C, Wang X. Virulent Effector Hasp155 of Puccinia striiformis f. sp. tritici Suppresses Plant Immunity and Promotes Fungus Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19295-19303. [PMID: 39177757 DOI: 10.1021/acs.jafc.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
As a kind of obligate biotrophic fungus, Puccinia striiformis f. sp. tritici (Pst) secretes vast effectors via haustoria to host cells during the infection to inhibit host defense responses and promote fungal invasion. In this study, based on the completion of genome sequencing and haustorial transcriptome sequencing of Pst, we identified a Pst effector (Hasp155) that is significantly induced in the early stage of Pst infection to wheat. The 18 N-terminal amino acids of Hasp155 encoded a signal peptide with a secretory function. Transient expression of Hasp155 in Nicotiana benthamiana inhibited Bax-induced cell death as well as chitin-triggered callose deposition and defense-related gene expression. Moreover, delivery of the Hasp155 protein into wheat cells via type three secretion systems (TTSS) led to reduced plant immunity to nonpathogenic bacteria and to the avirulent Pst race with decreased H2O2 accumulation and promoted Pst development. Furthermore, transgenic overexpression of Hasp155 significantly renders wheat resistance susceptible, resulting in a decreased defense response and increased Pst pathogenicity. Overall, these results indicate that Hasp155 is an important effector of Pst pathogenicity by suppressing plant immunity.
Collapse
Affiliation(s)
- Tong Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuteng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Genfu Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Somying Wansee
- College of International Education, Northwest A&F University, Yangling 712100, China
| | - Xinshi Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqi Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Zhang R, Wu Y, Qu X, Yang W, Wu Q, Huang L, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wang X, Wei Y, Xu Q. The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function. Nat Commun 2024; 15:6905. [PMID: 39134523 PMCID: PMC11319775 DOI: 10.1038/s41467-024-51249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.
Collapse
Affiliation(s)
- Rongrong Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wenjuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qin Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
8
|
Wang Y, Liu C, Qin Y, Du Y, Song C, Kang Z, Guo J, Guo J. Stripe rust effector Pst03724 modulates host immunity by inhibiting NAD kinase activation by a calmodulin. PLANT PHYSIOLOGY 2024; 195:1624-1641. [PMID: 38441329 DOI: 10.1093/plphys/kiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/19/2024] [Indexed: 06/02/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells to manipulate host immune processes. In this report, we present an important Pst effector, Pst03724, whose mRNA expression level increases during Pst infection of wheat (Triticum aestivum). Silencing of Pst03724 reduced the growth and development of Pst. Pst03724 targeted the wheat calmodulin TaCaM3-2B, a positive regulator of wheat immunity. Subsequent investigations revealed that Pst03724 interferes with the TaCaM3-2B-NAD kinase (NADK) TaNADK2 association and thus inhibits the enzyme activity of TaNADK2 activated by TaCaM3-2B. Knocking down TaNADK2 expression by virus-mediated gene silencing significantly increased fungal growth and development, suggesting a decrease in resistance against Pst infection. In conclusion, our findings indicate that Pst effector Pst03724 inhibits the activity of NADK by interfering with the TaCaM3-2B-TaNADK2 association, thereby facilitating Pst infection.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyang Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Chao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, P. R. China
| |
Collapse
|
9
|
Li Z, Velásquez‐Zapata V, Elmore JM, Li X, Xie W, Deb S, Tian X, Banerjee S, Jørgensen HJL, Pedersen C, Wise RP, Thordal‐Christensen H. Powdery mildew effectors AVR A1 and BEC1016 target the ER J-domain protein HvERdj3B required for immunity in barley. MOLECULAR PLANT PATHOLOGY 2024; 25:e13463. [PMID: 38695677 PMCID: PMC11064805 DOI: 10.1111/mpp.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.
Collapse
Affiliation(s)
- Zizhang Li
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Present address:
Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape ArchitectureUniversity of MarylandRockvilleMarylandUSA
| | - Valeria Velásquez‐Zapata
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- Present address:
GreenLight Biosciences, IncResearch Triangle ParkNorth CarolinaUSA
| | - J. Mitch Elmore
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- USDA‐Agricultural Research Service, Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Present address:
USDA‐Agricultural Research Service, Cereal Disease LaboratorySt. PaulMinnesotaUSA
| | - Xuan Li
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Wenjun Xie
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Sohini Deb
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Xiao Tian
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Sagnik Banerjee
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of StatisticsIowa State UniversityAmesIowaUSA
- Present address:
Bristol Myers SquibbSan DiegoCaliforniaUSA
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Carsten Pedersen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Roger P. Wise
- Program in Bioinformatics & Computational BiologyIowa State UniversityAmesIowaUSA
- Department of Plant Pathology, Entomology and MicrobiologyIowa State UniversityAmesIowaUSA
- USDA‐Agricultural Research Service, Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | |
Collapse
|
10
|
Jaswal R, Rajarammohan S, Dubey H, Kiran K, Rawal H, Sonah H, Deshmukh R, Sharma TR. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi. Mol Biotechnol 2024; 66:845-864. [PMID: 37000361 DOI: 10.1007/s12033-023-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
The effector proteins produced by plant pathogens are one of the essential components of host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal β1/β2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein-like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | | | - Himanshu Dubey
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
11
|
Liu C, Wang Y, Du Y, Kang Z, Guo J, Guo J. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici targets and stabilizes TaGAPDH2 that promotes stripe rust disease. PLANT, CELL & ENVIRONMENT 2024; 47:947-960. [PMID: 38105492 DOI: 10.1111/pce.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes effector proteins that enter plant cells and manipulate host processes. In a previous study, we identified a glycine-serine-rich effector PstGSRE4, which was proven to regulate the reactive oxygen species (ROS) pathway by interacting with TaCZSOD2. In this study, we further demonstrated that PstGSRE4 interacts with wheat glyceraldehyde-3-phosphate dehydrogenase TaGAPDH2, which is related to ROS signalling. In wheat, silencing of TaGAPDH2 by virus-induced gene silencing increased the accumulation of ROS induced by the Pst virulent race CYR31. Overexpression of TaGAPDH2 decreased the accumulation of ROS induced by the avirulent Pst race CYR23. In addition, TaGAPDH2 suppressed Pst candidate elicitor Pst322-triggered cell death by decreasing ROS accumulation in Nicotiana benthamiana. Knocking down TaGAPDH2 expression attenuated Pst infection, whereas overexpression of TaGAPDH2 promoted Pst infection, indicating that TaGAPDH2 is a negative regulator of plant defence. In N. benthamiana, PstGSRE4 stabilized TaGAPDH2 through inhibition of the 26S proteasome-mediated destabilization. Overall, these results suggest that TaGAPDH2 is hijacked by the Pst effector as a negative regulator of plant immunity to promote Pst infection in wheat.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Xiao M, Chen D, Liu S, Chen A, Fang A, Tian B, Yu Y, Bi C, Kang Z, Yang Y. A chitin deacetylase PsCDA2 from Puccinia striiformis f. sp. tritici confers disease pathogenicity by suppressing chitin-triggered immunity in wheat. MOLECULAR PLANT PATHOLOGY 2023; 24:1467-1479. [PMID: 37486146 PMCID: PMC10632782 DOI: 10.1111/mpp.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Plants have the ability to recognize the essential chitin molecule present in the fungal cell wall, which stimulates the immune response. Phytopathogenic fungi have developed various strategies to inhibit the chitin-triggered immune response. Here, we identified a chitin deacetylase of Puccinia striiformis f. sp. tritici (Pst), known as PsCDA2, that was induced during the initial invasion of wheat and acted as an inhibitor of plant cell death. Knockdown of PsCDA2 in wheat enhanced its resistance against Pst, highlighting the significance of PsCDA2 in the host-pathogen interaction. Moreover, PsCDA2 can protect Pst urediniospores from being damaged by host chitinase in vitro. PsCDA2 also suppressed the basal chitin-induced plant immune response, including the accumulation of callose and the expression of defence genes. Overall, our results demonstrate that Pst secretes PsCDA2 as a chitin deacetylase involved in establishing infection and modifying the acetyl group to prevent the breakdown of chitin in the cell wall by host endogenous chitinases. Our research unveils a mechanism by which the fungus suppresses plant immunity, further contributing to the understanding of wheat stripe rust control. This information could have significant implications for the development of suitable strategies for protecting crops against the devastating effects of this disease.
Collapse
Affiliation(s)
- Muye Xiao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Dezhi Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Anle Chen
- Chongqing Academy of Agriculture SciencesChongqingChina
| | - Anfei Fang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Binnian Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Yang Yu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Chaowei Bi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
13
|
Zheng P, Liu M, Pang L, Sun R, Yao M, Wang X, Kang Z, Liu J. Stripe rust effector Pst21674 compromises wheat resistance by targeting transcription factor TaASR3. PLANT PHYSIOLOGY 2023; 193:2806-2824. [PMID: 37706535 DOI: 10.1093/plphys/kiad497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Pathogens compromise host defense responses by strategically secreting effector proteins. However, the molecular mechanisms by which effectors manipulate disease-resistance factors to evade host surveillance remain poorly understood. In this study, we characterized a Puccinia striiformis f. sp. tritici (Pst) effector Pst21674 with a signal peptide. Pst21674 was significantly upregulated during Pst infections in wheat (Triticum aestivum L.) and knocking down Pst21674 by host-induced gene silencing led to reduced Pst pathogenicity and restricted hyphal spread in wheat. Pst21674 interaction with the abscisic acid-, stress-, and ripening-induced protein TaASR3 was validated mainly in the nucleus. Size exclusion chromatography, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that TaASR3 could form a functional tetramer. Virus-induced gene silencing and overexpression demonstrated that TaASR3 contributes to wheat resistance to stripe rust by promoting accumulation of reactive oxygen species and cell death. Additionally, transcriptome analysis revealed that the expression of defense-related genes was regulated in transgenic wheat plants overexpressing TaASR3. Interaction between Pst21674 and TaASR3 interfered with the polymerization of TaASR3 and suppressed TaASR3-mediated transcriptional activation of defense-related genes. These results indicate that Pst21674 serves as an important virulence factor secreted into the host nucleus to impede wheat resistance to Pst, possibly by targeting and preventing polymerization of TaASR3.
Collapse
Affiliation(s)
- Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengxue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruyi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mohan Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
15
|
Ji F, Zhang J, Chen X, Liu B, Zhou A, Feng Y, Zhao J, Huang L, Kang Z, Zhan G. Effects of Flubeneteram on Inhibiting the Development of Puccinia striiformis f. sp. tritici in Wheat Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5162-5171. [PMID: 36946748 DOI: 10.1021/acs.jafc.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a serious threat to wheat production, and the application of fungicides is one of the most important means for controlling the disease. The purpose of this study is to determine the effects of a new succinate dehydrogenase inhibitor (SDHI) fungicide, flubeneteram, on reducing stripe rust. The baseline sensitivity of 173 Pst isolates from 13 provinces of China to flubeneteram was determined. Flubeneteram displayed significant effects on inhibiting SDH enzymes of Pst. Histological observations showed that after flubeneteram application, the formation and development of Pst hyphae and haustoria were significantly inhibited, and the structures were destroyed. Flubeneteram primed wheat for salicylic acid-induced defenses via upregulating pathogenesis-related genes (PR1 and PR2). Altogether, our study is the first to provide evidence that flubeneteram induces wheat defense against Pst infection. The findings indicate that flubeneteram could be an effective fungicide for managing stripe rust.
Collapse
Affiliation(s)
- Fan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Juntian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, United States
| | - Bofan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Aihong Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Yaoxuan Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| |
Collapse
|
16
|
Qi Y, Li J, Mapuranga J, Zhang N, Chang J, Shen Q, Zhang Y, Wei J, Cui L, Liu D, Yang W. Wheat leaf rust fungus effector Pt13024 is avirulent to TcLr30. FRONTIERS IN PLANT SCIENCE 2023; 13:1098549. [PMID: 36726676 PMCID: PMC9885084 DOI: 10.3389/fpls.2022.1098549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Wheat leaf rust, caused by Puccinia triticina Eriks. (Pt), is a global wheat disease threatening wheat production. Dissecting how Pt effector proteins interact with wheat has great significance in understanding the pathogenicity mechanisms of Pt. In the study, the cDNA of Pt 13-5-72 interacting with susceptible cultivar Thatcher was used as template to amplify Pt13024 gene. The expression pattern and structure of Pt13024 were analyzed by qRT-PCR and online softwares. The secretion function of Pt13024 signal peptide was verified by the yeast system. Subcellular localization of Pt13024 was analyzed using transient expression on Nicotiana benthamiana. The verification that Pt13024 inhibited programmed cell death (PCD) was conducted on N. benthamiana and wheat. The deletion mutation of Pt13024 was used to identify the virulence function motif. The transient transformation of wheat mediated by the type III secretion system (TTSS) was used to analyze the activity of regulating the host defense response of Pt13024. Pt13024 gene silencing was performed by host-induced gene silencing (HIGS). The results showed that Pt13024 was identified as an effector and localized in the cytoplasm and nucleus on the N. benthamiana. It can inhibit PCD induced by the Bcl-2-associated X protein (BAX) from mice and infestans 1 (INF1) from Phytophthora infestans on N. benthamiana, and it can also inhibit PCD induced by DC3000 on wheat. The amino acids 22 to 41 at N-terminal of the Pt13024 are essential for the inhibition of programmed cell death (PCD) induced by BAX. The accumulation of reactive oxygen species and deposition of callose in near-isogenic line TcLr30, which is in Thatcher background with Lr30, induced by Pt13024 was higher than that in 41 wheat leaf rust-resistant near-isogenic lines (monogenic lines) with different resistance genes and Thatcher. Silencing of Pt13024 reduced the leaf rust resistance of Lr30 during the interaction between Pt and TcLr30. We can conclude that Pt13024 is avirulent to TcLr30 when Pt interacts with TcLr30. These findings lay the foundation for further investigations into the role of Pt effector proteins in pathogenesis and their regulatory mechanisms.
Collapse
Affiliation(s)
- Yue Qi
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Li
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
- College of Biological Sciences and Engineering, Xingtai University, Xingtai, China
| | - Johannes Mapuranga
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| | - Na Zhang
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| | - Jiaying Chang
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Science, Hengshui, China
| | - Jie Wei
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
- Department of Agriculture and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, China
| | - Liping Cui
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| | - Daqun Liu
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| | - Wenxiang Yang
- Department of Plant Pathology, Agricultural University of Hebei/Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, China
| |
Collapse
|
17
|
Fei W, Liu Y. Biotrophic Fungal Pathogens: a Critical Overview. Appl Biochem Biotechnol 2023; 195:1-16. [PMID: 35951248 DOI: 10.1007/s12010-022-04087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Biotrophic fungi are one group of heterogeneous organisms and these fungi differ in their traits like mode of nutrition, types of reproduction, and dispersal systems. Generally, based on the nutritional mode, fungi are classified into three broad categories, viz. biotrophs, necrotrophs, and hemi-biotrophs. Biotrophs derive their nutrients and energy from living plant cells and survive within the interstitial space of the cells. Biotrophic fungi cause serious crop diseases but are highly challenging to investigate and develop a treatment strategy. Blumeria (Erysiphe) graminis, Uromyces fabae, Ustilago maydis, Cladosporium fulvum, Puccinia graminis, and Phytophthora infestans are some of the significant biotrophic fungi that affect mainly plants. One among the biotrophic fungus, Pneumocystis jirovecii (Taphrinomycotina subphylum of the Ascomycota) exclusively a human pathogen, can cause lung diseases such as "pneumocystis." Biotrophic fungus widely parasitizing Solanaceae family crops (Tomato and potato) has done massive damage to the crops and has led to economic impact worldwide. During infection and for nutrient absorption, biotrophs develops external appendages such as appressoria or haustoria. The hyphae or appressorium adheres to the plant cell wall and collapses the layers for their nutrient absorption. The pathogen also secretes effector molecules to escape from the plant defense mechanism. Later, plants activate their primary and secondary defense mechanisms; however, the pathogen induces virulence genes to escape the host immune responses. Obligate biotrophic fungi pathogenicity has not been fully understood at the molecular level because of the complex interaction, recognition, and signaling with the host. This review summarizes the mechanism of infection in the host, and immune response to emphasize the understanding of the biotrophic fungal biology and pathogenesis in crops. Thus, the detailed review will pave the way to design methods to overcome the resistance of biotrophic fungi and develop disease-free crops.
Collapse
Affiliation(s)
- Wang Fei
- Zhengzhou Yongfeng Bio-Fertilizer Co., Ltd, high-tech district, 6 Tsui Zhu Street, 863 Software Park, Building 9 1102, Henan Province, 450001, Zhengzhou City, China.
| | - Ye Liu
- Xiangtan Institute for Food and Drug Control, Xiangtan, China
| |
Collapse
|
18
|
Wei J, Wang X, Hu Z, Wang X, Wang J, Wang J, Huang X, Kang Z, Tang C. The Puccinia striiformis effector Hasp98 facilitates pathogenicity by blocking the kinase activity of wheat TaMAPK4. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:249-264. [PMID: 36181397 DOI: 10.1111/jipb.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) employs virulence effectors to disturb host immunity and causes devastating stripe rust disease. However, our understanding of how Pst effectors regulate host defense responses remains limited. In this study, we determined that the Pst effector Hasp98, which is highly expressed in Pst haustoria, inhibits plant immune responses triggered by flg22 or nonpathogenic bacteria. Overexpression of Hasp98 in wheat (Triticum aestivum) suppressed avirulent Pst-triggered immunity, leading to decreased H2 O2 accumulation and promoting P. striiformis infection, whereas stable silencing of Hasp98 impaired P. striiformis pathogenicity. Hasp98 interacts with the wheat mitogen-activated protein kinase TaMAPK4, a positive regulator of plant resistance to stripe rust. The conserved TEY motif of TaMAPK4 is important for its kinase activity, which is required for the resistance function. We demonstrate that Hasp98 inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P. striiformis. These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat, thereby promoting P. striiformis infection.
Collapse
Affiliation(s)
- Jinping Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Zeyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jialiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xueling Huang
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
19
|
Cui Z, Wu W, Fan F, Wang F, Liu D, Di D, Wang H. Transcriptome analysis of Lr19-virulent mutants provides clues for the AvrLr19 of Puccinia triticina. Front Microbiol 2023; 14:1062548. [PMID: 37032911 PMCID: PMC10073493 DOI: 10.3389/fmicb.2023.1062548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Wheat leaf rust caused by Puccinia triticina (Pt) remains one of the most destructive diseases of common wheat worldwide. Understanding the pathogenicity mechanisms of Pt is important to control wheat leaf rust. Methods The urediniospores of Pt race PHNT (wheat leaf rust resistance gene Lr19-avirulent isolate) were mutagenized with ethyl methanesulfonate (EMS), and two Lr19-virulent mutants named M1 and M2 were isolated. RNA sequencing was performed on samples collected from wheat cultivars Chinese Spring and TcLr19 infected with wild-type (WT) PHNT, M1, and M2 isolates at 14 days post-inoculation (dpi), respectively. Screening AvrLr19 candidates by quantitative reverse transcription PCR (qPCR) and Agrobacterium-mediated transient assays in Nicotiana benthamiana. Results 560 genes with single nucleotide polymorphisms (SNPs) and insertions or deletions (Indels) from non-differentially expressed genes were identified. Among them, 10 secreted proteins were screened based on their fragments per kilobase of exon model per million mapped reads (FPKM) values in the database. qPCR results showed that the expression profiles of 7 secreted proteins including PTTG_27471, PTTG_12441, PTTG_28324, PTTG_26499, PTTG_06910, PTTG_26516, and PTTG_03570 among 10 secreted proteins in mutants were significantly different with that in wild-type isolate after infection wheat TcLr19 and might be related to the recognition between Lr19 and AvrLr19. In addition, a total of 216 differentially expressed genes (DEGs) were obtained from three different sample comparisons including M1-vs-WT, M2-vs-WT, and M1-vs-M2. Among 216 DEGs, 15 were predicted to be secreted proteins. One secreted protein named PTTG_04779 could inhibit programmed progress of cell death (PCD) induced by apoptosis-controlling genes B-cell lymphoma-2 associated X protein (BAX) on Nicotiana benthamiana, indicating that it might play a virulence function in plant. Taken together, total 8 secreted proteins, PTTG_04779, PTTG_27471, PTTG_12441, PTTG_28324, PTTG_26499, PTTG_06910, PTTG_26516, PTTG_03570 are identified as AvrLr19 candidates. Discussion Our results showed that a large number of genes participate in the interaction between Pt and TcLr19, which will provide valuable resources for the identification of AvrLr19 candidates and pathogenesis-related genes.
Collapse
Affiliation(s)
- Zhongchi Cui
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Wenyue Wu
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Fan Fan
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Fei Wang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Daqun Liu
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
- *Correspondence: Dianping Di,
| | - Haiyan Wang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- Haiyan Wang,
| |
Collapse
|
20
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Xu Q, Hu S, Jin M, Xu Y, Jiang Q, Ma J, Zhang Y, Qi P, Chen G, Jiang Y, Zheng Y, Wei Y. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants. MOLECULAR PLANT PATHOLOGY 2022; 23:1751-1764. [PMID: 35998056 PMCID: PMC9644276 DOI: 10.1111/mpp.13262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fusarium head blight is a destructive disease caused by Fusarium species. Little is known about the pathogenic molecular weapons of Fusarium graminearum. The gene encoding a small secreted protein, Fg02685, in F. graminearum was found to be upregulated during wheat head infection. Knockout mutation of Fg02685 reduced the growth and development of Fusarium in wheat spikes. Transient expression of Fg02685 or recombinant protein led to plant cell death in a BAK1- and SOBIR1-independent system. Fg02685 was found to trigger plant basal immunity by increasing the deposition of callose, the accumulation of reactive oxygen species (ROS), and the expression of defence-related genes. The Fg02685 signal peptide was required for the plant's apoplast accumulation and induces cell death, indicating Fg02685 is a novel conserved pathogen-associated molecular pattern. Moreover, its homologues are widely distributed in oomycetes and fungal pathogens and induced cell death in tobacco. The conserved α-helical motif at the N-terminus was necessary for the induction of cell death. Moreover, a 32-amino-acid peptide, Fg02685 N-terminus peptide 32 (FgNP32), was essential for the induction of oxidative burst, callose deposition, and mitogen-activated protein kinase signal activation in plants. Prolonged exposure to FgNP32 enhanced the plant's resistance to Fusarium and Phytophthora. This study provides new approaches for an environment-friendly control strategy for crop diseases by applying plant immune inducers to strengthen broad-spectrum disease resistance in crops.
Collapse
Affiliation(s)
- Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Su Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Minxia Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yangjie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduChina
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| |
Collapse
|
22
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
23
|
RoyChowdhury M, Sternhagen J, Xin Y, Lou B, Li X, Li C. Evolution of pathogenicity in obligate fungal pathogens and allied genera. PeerJ 2022; 10:e13794. [PMID: 36042858 PMCID: PMC9420410 DOI: 10.7717/peerj.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
Obligate fungal pathogens (ascomycetes and basidiomycetes) and oomycetes are known to cause diseases in cereal crop plants. They feed on living cells and most of them have learned to bypass the host immune machinery. This paper discusses some of the factors that are associated with pathogenicity drawing examples from ascomycetes, basidiomycetes and oomycetes, with respect to their manifestation in crop plants. The comparisons have revealed a striking similarity in the three groups suggesting convergent pathways that have arisen from three lineages independently leading to an obligate lifestyle. This review has been written with the intent, that new information on adaptation strategies of biotrophs, modifications in pathogenicity strategies and population dynamics will improve current strategies for breeding with stable resistance.
Collapse
Affiliation(s)
- Moytri RoyChowdhury
- Infectious Diseases Program, California Department of Public Health, Richmond, California, United States of America
| | - Jake Sternhagen
- Riverside School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Ya Xin
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Binghai Lou
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, P.R. China
| | - Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, P.R. China
| | - Chunnan Li
- Hangzhou Academy of Agricultural Sciences, Hangzhou, P.R. China
| |
Collapse
|
24
|
Comparative Genome Analyses of Plant Rust Pathogen Genomes Reveal a Confluence of Pathogenicity Factors to Quell Host Plant Defense Responses. PLANTS 2022; 11:plants11151962. [PMID: 35956440 PMCID: PMC9370660 DOI: 10.3390/plants11151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot cereal crops wheat, barley, oats, maize and sorghum revealed the presence of larger structural variations contributing to their genome sizes. A comparative alignment of the rust pathogen genomes resulted in the identification of collinear and syntenic relationships between P. novopanici and P. sorghi; P. graminis tritici 21–0 (Pgt 21) and P. graminis tritici Ug99 (Pgt Ug99) and between Pgt 21 and P. triticina (Pt). Repeat element analysis indicated a strong presence of retro elements among different Puccinia genomes, contributing to the genome size variation between ~1 and 3%. A comparative look at the enriched protein families of Puccinia spp. revealed a predominant role of restriction of telomere capping proteins (RTC), disulfide isomerases, polysaccharide deacetylases, glycoside hydrolases, superoxide dismutases and multi-copper oxidases (MCOs). All the proteomes of Puccinia spp. share in common a repertoire of 75 secretory and 24 effector proteins, including glycoside hydrolases cellobiohydrolases, peptidyl-propyl isomerases, polysaccharide deacetylases and protein disulfide-isomerases, that remain central to their pathogenicity. Comparison of the predicted effector proteins from Puccinia spp. genomes to the validated proteins from the Pathogen–Host Interactions database (PHI-base) resulted in the identification of validated effector proteins PgtSR1 (PGTG_09586) from P. graminis and Mlp124478 from Melampsora laricis across all the rust pathogen genomes.
Collapse
|
25
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
26
|
Mapuranga J, Zhang L, Zhang N, Yang W. The haustorium: The root of biotrophic fungal pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:963705. [PMID: 36105706 PMCID: PMC9465030 DOI: 10.3389/fpls.2022.963705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 05/02/2023]
Abstract
Biotrophic plant pathogenic fungi are among the dreadful pathogens that continuously threaten the production of economically important crops. The interaction of biotrophic fungal pathogens with their hosts necessitates the development of unique infection mechanisms and involvement of various virulence-associated components. Biotrophic plant pathogenic fungi have an exceptional lifestyle that supports nutrient acquisition from cells of a living host and are fully dependent on the host for successful completion of their life cycle. The haustorium, a specialized infection structure, is the key organ for biotrophic fungal pathogens. The haustorium is not only essential in the uptake of nutrients without killing the host, but also in the secretion and delivery of effectors into the host cells to manipulate host immune system and defense responses and reprogram the metabolic flow of the host. Although there is a number of unanswered questions in this area yet, results from various studies indicate that the haustorium is the root of biotrophic fungal pathogens. This review provides an overview of current knowledge of the haustorium, its structure, composition, and functions, which includes the most recent haustorial transcriptome studies.
Collapse
|
27
|
Cheng P, Wang Z, Ren Y, Jin P, Ma K, Li Q, Wang B. Silencing of a Wheat Ortholog of Glucan Synthase-Like Gene Reduced Resistance to Blumeria graminis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2021; 12:800077. [PMID: 35003189 PMCID: PMC8735228 DOI: 10.3389/fpls.2021.800077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Wheat powdery mildew, caused by the obligate biotrophic ascomycete fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to wheat production worldwide. It is known that Arabidopsis thaliana glucan synthase-like 5 (AtGSL5) improves the resistance of wheat to powdery mildew by increasing its anti-penetration abilities. However, the function of glucan synthase-like (GSL) orthologs in crop species remains largely unknown. In this study, TaGSL22, a novel functional ortholog of AtGSL5, was isolated as the only Bgt-induced GSL gene in wheat. Phylogenetic analysis indicated that TaGSL22 was conserved within the group of Gramineae and showed a closer relationship to GSL orthologs from monocots than to those from dicots. The TaGSL22 transcript was highest in the wheat leaves, followed by stems then roots. TaGSL22 was localized in the cell membrane and cytoplasm of wheat protoplasts, as predicted by transmembrane structure analysis. In addition, expression of TaGSL22 was induced by the plant hormones ethylene (ETH) and salicylic acid (SA), but down-regulated by jasmonate (JA) and abscisic acid (ABA). The transcript level of TaGSL22 was up-regulated in the incompatible interaction between Bgt and wheat, whereas it remained relatively unchanged in the compatible interaction. Knocking down of TaGSL22 by virus-induced gene silencing (VIGS) induced a higher infection type in the wheat-Bgt interaction. The TaGSL22-silenced plants exhibited reduced resistance to Bgt, accompanied by decreased callose accumulation. Our study shows a conserved function of GSL genes in plant immunity associated with penetration resistance, and it indicates that TaGSL22 can be used to improve papilla composition and enhance resistance to wheat powdery mildew.
Collapse
|
28
|
Ökmen B, Schwammbach D, Bakkeren G, Neumann U, Doehlemann G. The Ustilago hordei-Barley Interaction Is a Versatile System for Characterization of Fungal Effectors. J Fungi (Basel) 2021; 7:86. [PMID: 33513785 PMCID: PMC7912019 DOI: 10.3390/jof7020086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.
Collapse
Affiliation(s)
- Bilal Ökmen
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Daniela Schwammbach
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Straße, 35043 Marburg, Germany;
| | - Guus Bakkeren
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Gunther Doehlemann
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
29
|
Thordal-Christensen H. A holistic view on plant effector-triggered immunity presented as an iceberg model. Cell Mol Life Sci 2020; 77:3963-3976. [PMID: 32277261 PMCID: PMC7532969 DOI: 10.1007/s00018-020-03515-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
The immune system of plants is highly complex. It involves pattern-triggered immunity (PTI), which is signaled and manifested through branched multi-step pathways. To counteract this, pathogen effectors target and inhibit individual PTI steps. This in turn can cause specific plant cytosolic nucleotide-binding leucine-rich repeat (NLR) receptors to activate effector-triggered immunity (ETI). Plants and pathogens have many genes encoding NLRs and effectors, respectively. Yet, only a few segregate genetically as resistance (R) genes and avirulence (Avr) effector genes in wild-type populations. In an attempt to explain this contradiction, a model is proposed where far most of the NLRs, the effectors and the effector targets keep one another in a silent state. In this so-called "iceberg model", a few NLR-effector combinations are genetically visible above the surface, while the vast majority is hidden below. Besides, addressing the existence of many NLRs and effectors, the model also helps to explain why individual downregulation of many effectors causes reduced virulence and why many lesion-mimic mutants are found. Finally, the iceberg model accommodates genuine plant susceptibility factors as potential effector targets.
Collapse
Affiliation(s)
- Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
30
|
Jaswal R, Rajarammohan S, Dubey H, Sharma TR. Smut fungi as a stratagem to characterize rust effectors: opportunities and challenges. World J Microbiol Biotechnol 2020; 36:150. [PMID: 32924088 DOI: 10.1007/s11274-020-02927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/05/2020] [Indexed: 11/30/2022]
Abstract
The rust pathogens are one of the most complex fungi in the Basidiomycetes. The development of genomic resources for rust and other plant pathogens has opened the opportunities for functional genomics of fungal genes. Despite significant progress in the field of fungal genomics, functional characterization of the genome components has lacked, especially for the rust pathogens. Their obligate nature and lack of standard stable transformation protocol are the primary reasons for rusts to be one of the least explored genera despite its significance. In the recently sequenced rust genomes, a vast catalogue of predicted effectors and pathogenicity genes have been reported. However, most of these candidate genes remained unexplored due to the lack of suitable characterization methods. The heterologous expression of putative effectors in Nicotiana benthamiana and Arabidopsis thaliana has proved to be a rapid screening method for identifying the role of these effectors in virulence. However, no fungal system has been used for the functional validation of these candidate genes. The smuts, from the evolutionary point of view, are closely related to the rust pathogens. Moreover, they have been widely studied and hence could be a suitable model system for expressing rust fungal genes heterologously. The genetic manipulation methods for smuts are also well standardized. Complementation assays can be used for functional validation of the homologous genes present in rust and smut fungal pathogens, while the species-specific proteins can be expressed in the mutant strains of smut pathogens having reduced or no virulence for virulence analysis. We propose that smuts, especially Ustilago maydis, may prove to be a good model system to characterize rust effector proteins in the absence of methods to manipulate the rust genomes directly.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sivasubramanian Rajarammohan
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India.
- Crop Science Division, Indian Council of Agricultural Research, New Delhi, 110001, India.
| |
Collapse
|
31
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
32
|
Zhao S, Shang X, Bi W, Yu X, Liu D, Kang Z, Wang X, Wang X. Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina. Front Microbiol 2020; 11:1188. [PMID: 32582112 PMCID: PMC7283542 DOI: 10.3389/fmicb.2020.01188] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Rust fungi secrete various specialized effectors into host cells to manipulate the plant defense response. Conserved motifs, including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, EAR, [SG]-P-C-[KR]-P, DPBB_1 (PNPi), and ToxA, have been identified in various oomycete and fungal effectors and are reported to be crucial for effector translocation or function. However, little is known about potential effectors containing any of these conserved motifs in the wheat leaf rust fungus (Puccinia triticina, Pt). In this study, sequencing was performed on RNA samples collected from the germ tubes (GT) of uredospores of an epidemic Pt pathotype PHTT(P) and Pt-infected leaves of a susceptible wheat cultivar "Chinese Spring" at 4, 6, and 8 days post-inoculation (dpi). The assembled transcriptome data were compared to the reference genome of "Pt 1-1 BBBD Race 1." A total of 17,976 genes, including 2,284 "novel" transcripts, were annotated. Among all these genes, we identified 3,149 upregulated genes upon Pt infection at all time points compared to GT, whereas 1,613 genes were more highly expressed in GT. A total of 464 secreted proteins were encoded by those upregulated genes, with 79 of them also predicted as possible effectors by EffectorP. Using hmmsearch and Regex, we identified 719 RXLR-like, 19 PNPi-like, 19 CRN-like, 138 Y/F/WxC, and 9 CFEM effector candidates from the deduced protein database including data based on the "Pt 1-1 BBBD Race 1" genome and the transcriptome data collected here. Four of the PNPi-like effector candidates with DPBB_1 conserved domain showed physical interactions with wheat NPR1 protein in yeast two-hybrid assay. Nine Y/F/WxC and seven CFEM effector candidates were transiently expressed in Nicotiana benthamiana. None of these effector candidates showed induction or suppression of cell death triggered by BAX protein, but the expression of one CFEM effector candidate, PTTG_08198, accelerated the progress of cell death and promoted the accumulation of reactive oxygen species (ROS). In conclusion, we profiled genes associated with the infection process of the Pt pathotype PHTT(P). The identified effector candidates with conserved motifs will help guide the investigation of virulent mechanisms of leaf rust fungus.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Xiaofeng Shang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
33
|
Revealing Differentially Expressed Genes and Identifying Effector Proteins of Puccinia striiformis f. sp.
tritici
in Response to High-Temperature Seedling Plant Resistance of Wheat Based on Transcriptome Sequencing. mSphere 2020. [PMCID: PMC7316484 DOI: 10.1128/msphere.00096-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we performed transcriptomic analysis to identify differentially expressed genes and effector proteins of
Puccinia striiformis
f. sp.
tritici
(
Pst
) in response to the high-temperature seedling-plant (HTSP) resistance in wheat. Experimental validation confirmed the function of the highest upregulated effector protein, PstCEP1. This study provides a key resource for understanding the biology and molecular basis of
Pst
responses to wheat HTSP resistance, and PstCEP1 may be used in future studies to understand pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity processes in the
Pst
-wheat interaction system.
Collapse
|
34
|
Carmona M, Sautua F, Pérez-Hérnandez O, Reis EM. Role of Fungicide Applications on the Integrated Management of Wheat Stripe Rust. FRONTIERS IN PLANT SCIENCE 2020; 11:733. [PMID: 32582257 PMCID: PMC7296138 DOI: 10.3389/fpls.2020.00733] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/14/2023]
Abstract
First described in Europe in 1777, stripe rust (SR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss (Pst) is one of the most important and destructive diseases of wheat worldwide. Until 2000, SR was mainly endemic to cooler regions, but since then, new aggressive strains have emerged, spread intercontinentally, and caused severe epidemics in warmer regions across the world. This has put SR as a disease that poses a threat to the world food security. At present, the preferred strategy for control of SR is the access to wheat cultivars with adequate levels of SR resistance. However, wheat breeding programs are not sufficiently advanced to cope with the recently emerged Pst strains. Under this scenario, foliar fungicide applications have become an important component of SR management, but information on the effects of fungicide applications on SR control and wheat cultivar yield response is scarce. This review seeks to provide an overview of the impact and role of fungicides on SR management. With focus on wheat management in the major wheat-growing regions of the world, the review addresses: (a) the efficacy of different fungicide active ingredients, optimal fungicide timing and number of applications in controlling SR, and (b) the impact of fungicide on wheat grain yield response. Inclusion of fungicides in an integrated crop management approach is discussed.
Collapse
Affiliation(s)
- Marcelo Carmona
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Sautua
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oscar Pérez-Hérnandez
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Erlei M. Reis
- Escuela Para Graduados “Alberto Soriano”, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|