1
|
Ghasemi A, Yuan X, Yang CH. A novel transcriptional regulator, CdeR, modulates the type III secretion system via c-di-GMP signaling in Dickeya dadantii. Microbiol Spectr 2025; 13:e0265524. [PMID: 40042333 PMCID: PMC11960120 DOI: 10.1128/spectrum.02655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025] Open
Abstract
Dickeya dadantii is a bacterial pathogen that causes soft rot disease in many plant species worldwide, including temperate, subtropical, and tropical regions. This bacterium employs the type III secretion system (T3SS) to manipulate host immune responses. Although cyclic-di-GMP (c-di-GMP), a ubiquitous bacterial second messenger, negatively regulates the expression of T3SS genes in D. dadantii, the underlying mechanism remains unclear. In this study, we identified a potential transcriptional regulator, CdeR, which regulates the T3SS involving c-di-GMP. Through transposon mutagenesis, we discovered that deletion of cdeR in a gcpD mutant background restored T3SS gene expression. GcpD is a diguanylate cyclase responsible for c-di-GMP synthesis, and its deletion led to high T3SS gene expression due to low c-di-GMP. Further analysis revealed that, in the gcpD mutant background, CdeR regulates T3SS by manipulating intracellular c-di-GMP levels, involving another diguanylate cyclase, GcpL, whose expression is upregulated by CdeR. Additionally, we found that removing helical regions within the Helix-Turn-Helix DNA-binding domain of CdeR completely disrupted its regulation of the T3SS, underscoring the essential role of this domain in CdeR's functional activity. This study is the first to identify CdeR as a potential transcriptional regulator involved in T3SS regulation. Our findings provide significant insights into the regulatory mechanisms of T3SS and highlight the complex interactions between bacterial second messengers and transcriptional regulators in pathogenic bacteria.IMPORTANCEBacterial pathogens, such as Dickeya dadantii, must adapt to diverse environmental and host conditions by utilizing intricate regulatory networks to control virulence. This study identifies CdeR, a novel transcriptional regulator, as a crucial factor in modulating the expression of the type III secretion system (T3SS), a key virulence mechanism. Importantly, we show that CdeR operates in a cyclic-di-GMP (c-di-GMP)-dependent manner, linking this second messenger to T3SS regulation in D. dadantii for the first time. Our findings reveal a sophisticated interaction between c-di-GMP signaling and transcriptional regulation, highlighting how these systems collectively drive bacterial virulence. This work advances our understanding of bacterial pathogenesis and opens new avenues for developing targeted strategies to mitigate soft rot disease in crops, potentially improving agricultural productivity and plant health.
Collapse
Affiliation(s)
- Alaleh Ghasemi
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Feng Q, Zhou J, Zhang L, Fu Y, Yang L. Insights into the molecular basis of c-di-GMP signalling in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:20-38. [PMID: 36539391 DOI: 10.1080/1040841x.2022.2154140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa can cause severe infections in immunocompromized people or cystic fibrosis (CF) patients. Because of its remarkable ability to invade the host and withstand the bacteriocidal effect of most conventional antibiotics, the infection caused by P. aeruginosa has become a major concern for human health. The switch from acute to chronic infection is governed by the second messenger bis-(3'-5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) in P. aeruginosa, and c-di-GMP is now recognized to regulate many important biological processes in pathogenesis. The c-di-GMP signalling mechanisms in P. aeruginosa have been studied extensively in the past decade, revealing complicated c-di-GMP metabolism and signalling network. In this review, the underlying mechanisms of this signalling network will be discussed, mainly focussing on how environmental cues regulate c-di-GMP signalling, protein-protein interaction mediated functional regulation, heterogeneity of c-di-GMP and cross talk between c-di-GMP signalling and other signalling systems. Understanding the molecular mechanism underlying the complex c-di-GMP signalling network would be beneficial for developing therapeutic approaches and antibacterial agents to combat the threat from P. aeruginosa.
Collapse
Affiliation(s)
- Qishun Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, PR China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| |
Collapse
|
5
|
Wang B, Zhang Z, Xu F, Yang Z, Li Z, Shen D, Wang L, Wu H, Li T, Yan Q, Wei Q, Shao X, Qian G. Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor. THE ISME JOURNAL 2023; 17:2232-2246. [PMID: 37838821 PMCID: PMC10689834 DOI: 10.1038/s41396-023-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It's not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zixiang Yang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zihan Li
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaolong Shao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guoliang Qian
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
6
|
Tang B, Wang B, Xu Z, Hou R, Zhang M, Chen X, Liu Y, Liu F. Iron ions regulate antifungal HSAF biosynthesis in Lysobacter enzymogenes by manipulating the DNA-binding affinity of the ferric uptake regulator (Fur). Microbiol Spectr 2023; 11:e0061723. [PMID: 37737630 PMCID: PMC10581043 DOI: 10.1128/spectrum.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 09/23/2023] Open
Abstract
Heat-stable antifungal factor (HSAF), produced by Lysobacter enzymogenes OH11, is regarded as a potential biological pesticide due to its broad-spectrum antifungal activity and novel mode of action. However, the current production of HSAF is low and cannot meet the requirements for large-scale production. Herein, we discovered that iron ions greatly promoted HSAF production, and the ferric uptake regulator (Fur) was involved in this regulatory process. Fur was also found to participate in the regulation of iron homeostasis in OH11 via the classic inhibition mechanism of Holo-Fur. Furthermore, Fur was collectively observed to directly bind to the promoter of the HSAF biosynthesis gene, and its DNA-binding affinity was attenuated by the addition of iron ions in vitro and in vivo. Its regulatory mechanism followed the uncommon inhibition mechanism of Apo-Fur. In summary, Fur exhibited a bidirectional regulatory mechanism in OH11. This study reveals a novel regulatory mechanism whereby Fur upregulates the biosynthesis of secondary metabolites. These findings contribute to the improvement of HSAF production and may guide its development into biological pesticides. IMPORTANCE HSAF possesses potent and broad antifungal activity with a novel mode of action. The HSAF yield is critical for fermentation production. In this study, iron ions were found to increase HSAF production, and the specific mechanism was elaborated. These results provide theoretical support for genetic transformation to improve HSAF yield, supporting its development into biological pesticides.
Collapse
Affiliation(s)
- Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhengjiang, Jiangsu, China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Zhizhou Xu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rouxian Hou
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Xian Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Youzhou Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
7
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
8
|
Xiong D, Yang Z, He X, He W, Shen D, Wang L, Lin L, Murero A, Minamino T, Shao X, Qian G. Loss of Flagella-Related Genes Enables a Nonflagellated, Fungal-Predating Bacterium To Strengthen the Synthesis of an Antifungal Weapon. Microbiol Spectr 2023; 11:e0414922. [PMID: 36629418 PMCID: PMC9927559 DOI: 10.1128/spectrum.04149-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023] Open
Abstract
Loss of flagellar genes causes a nonmotile phenotype. The genus Lysobacter consists of numerous environmentally ubiquitous, nonflagellated bacteria, including Lysobacter enzymogenes, an antifungal bacterium that is beneficial to plants. L. enzymogenes still has many flagellar genes on its genome, although this bacterium does not engage in flagella-driven motility. Here, we report that loss of certain flagellar genes allows L. enzymogenes to strengthen its evolutionarily gained capacity in fungal killing. To clarify why this bacterium loses flagellar genes during the evolutionary process, we cloned several representative flagellar genes from Xanthomonas oryzae, a flagellated, phylogenetically related species of Lysobacter, and introduced them individually into L. enzymogenes to mimic genomic reacquisition of lost flagellar genes. Heterogeneous expression of the three X. oryzae flagellar structural genes (Xo-motA, Xo-motB, Xo-fliE) and one flagellar regulatory gene (Xo-fleQ) remarkably weakened the bacterial capacity to kill fungal pathogens by impairing the synthesis of an antifungal weapon, known as the heat-stable antifungal factor (HSAF). We further investigated the underlying mechanism by selecting Xo-FleQ as the representative because it is a master transcription factor responsible for flagellar gene expression. Xo-FleQ inhibited the transcription of operon genes responsible for HSAF synthesis via direct binding of Xo-FleQ to the promoter region, thereby decreasing HSAF biosynthesis by L. enzymogenes. These observations suggest a possible genome and function coevolution event, in which an antifungal bacterium deletes certain flagellar genes in order to enhance its ability to kill fungi. IMPORTANCE It is generally recognized that flagellar genes are commonly responsible for the flagella-driven bacterial motility. Thus, finding nonflagellated bacteria partially or fully lost flagellar genes is not a surprise. However, the present study provides new insights into this common idea. We found that loss of either certain flagellar structural or regulatory genes (such as motA, motB, fliE, and fleQ) allows a nonflagellated, antifungal bacterium (L. enzymogenes) to stimulate its fungal-killing capacity, outlining a genome-function coevolution event, where an antifungal bacterium "smartly" designed its genome to "delete" crucial flagellar genes to coordinate flagellar loss and fungal predation. This unusual finding might trigger bacteriologists to reconsider previously ignored functions of the lost flagellar genes in any nonflagellated, pathogenic, or beneficial bacteria.
Collapse
Affiliation(s)
- Dan Xiong
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Zixiang Yang
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xueting He
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Weimei He
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Danyu Shen
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Lu Wang
- Medical College, China Three Gorges University, Yichang, China
| | - Long Lin
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Aprodisia Murero
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Xiaolong Shao
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| | - Guoliang Qian
- College of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
9
|
The Wsp chemosensory system modulates c-di-GMP-dependent biofilm formation by integrating DSF quorum sensing through the WspR-RpfG complex in Lysobacter. NPJ Biofilms Microbiomes 2022; 8:97. [PMID: 36526637 PMCID: PMC9758175 DOI: 10.1038/s41522-022-00365-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
The ubiquitous Wsp (wrinkly spreader phenotype) chemosensory system and DSF (diffusible signal factor) quorum sensing are two important chemically associated signaling systems that mediate bacterial communications between the host and environment. Although these two systems individually control biofilm formation in pathogenic bacteria via the ubiquitous second messenger c-di-GMP, their crosstalk mechanisms remain elusive. Here we present a scenario from the plant-beneficial and antifungal bacterium Lysobacter enzymogenes OH11, where biofilm formation favors the colonization of this bacterium in fungal hyphae. We found that the Wsp system regulated biofilm formation via WspR-mediated c-di-GMP signaling, whereas DSF system did not depend on the enzymatic activity of RpfG to regulate biofilm formation. We further found that WspR, a diguanylate cyclase (DGC) responsible for c-di-GMP synthesis, could directly bind to one of the DSF signaling components, RpfG, an active phosphodiesterase (PDE) responsible for c-di-GMP degradation. Thus, the WspR-RpfG complex represents a previously undiscovered molecular linker connecting the Wsp and DSF systems. Mechanistically, RpfG could function as an adaptor protein to bind and inhibit the DGC activity of unphosphorylated WspR independent of its PDE activity. Phosphorylation of WspR impaired its binding affinity to RpfG and also blocked the ability of RpfG to act as an adaptor protein, which enabled the Wsp system to regulate biofilm formation in a c-di-GMP-dependent manner by dynamically integrating the DSF system. Our findings demonstrated a previously uncharacterized mechanism of crosstalk between Wsp and DSF systems in plant-beneficial and antifungal bacteria.
Collapse
|
10
|
Chen S, Hirano T, Hayashi Y, Tamura H. Biological soil disinfestation compatible with renewable energy production for sustainable agriculture. JOURNAL OF PESTICIDE SCIENCE 2022; 47:111-117. [PMID: 36479453 PMCID: PMC9706286 DOI: 10.1584/jpestics.d22-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Biological soil disinfestation (BSD) is biotechnology to control soil-borne plant pathogens based on the anaerobic-reducing environment in soil and the functions of indigenous microbes. A new sustainable agricultural technology, the GET system, which produces and recovers methane as renewable energy from paddy fields, has a structure and principles similar to those of BSD technology. To confirm the potential of the GET system as BSD technology, the microbial community structures in the GET system were analyzed using next-generation sequencing. Thirty-four phyla were detected: 31 bacterial and 3 archaeal. Firmicutes dominated during the experimental period, which plays an important role in BSD functions such as organic decomposition, nitrate removal, and soil-borne pathogen elimination. The ability of the GET system to control soil-borne pathogens as well as produce renewable energy was demonstrated.
Collapse
Affiliation(s)
- Shaohua Chen
- Graduate School of Agriculture, Meijo University
| | | | | | | |
Collapse
|
11
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
12
|
Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. INFECTION GENETICS AND EVOLUTION 2021; 94:105008. [PMID: 34284137 DOI: 10.1016/j.meegid.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease of rice worldwide, including China. The second messenger c-di-GMP plays an important role in the transduction of intercellular signals. However, little is known about the function of EAL domain protein in c-di-GMP that regulates the virulence in Xoc. In this study, the function of EAL domain protein encoded by pde (FE36_09715) gene in the regulation of c-di-GMP was investigated. Results of this study, showed that the deletion of pde gene led to a significant reduction in the virulence of Xoc and was positively related to the reduction of exopolysaccharides production, biofilm formation, and flagellar motility. However, these significantly impaired properties from the ∆pde mutant strain were partially recovered in the complementary strain. In addition, the deletion of pde gene in Xoc strain YM15 had no visible effect on the colony morphology, amylase, and protease activities of Xoc. It is concluded that, as a regulator for the c-di-GMP level, the pde gene plays an important role in partial biological processes in Xoc and is essential for its virulence.
Collapse
Affiliation(s)
- Xiaoyan Wan
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yanfang Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
13
|
Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 2021; 23:5704-5715. [PMID: 34288318 DOI: 10.1111/1462-2920.15674] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Bacteria interact with fungi in a variety of ways to inhibit fungal growth, while the underlying mechanisms remain only partially characterized. The plant-beneficial Bacillus and Pseudomonas species are well-known antifungal biocontrol agents, whereas Lysobacter are far less studied. Members of Lysobacter are easy to grow in fermenters and are safe to humans, animals and plants. These environmentally ubiquitous bacteria use a diverse arsenal of weapons to prey on other microorganisms, including fungi and oomycetes. The small molecular toxins secreted by Lysobacter represent long-range weapons effective against filamentous fungi. The secreted hydrolytic enzymes act as intermediate-range weapons against non-filamentous fungi. The contact-dependent killing devices are proposed to work as short-range weapons. We describe here the structure, biosynthetic pathway, action mode and applications of one of the best-characterized long-range weapons, the heat-stable antifungal factor (HSAF) produced by Lysobacter enzymogenes. We discuss how the flagellar type III secretion system has evolved into an enzyme secretion machine for the intermediate-range antifungal weapons. We highlight an intricate mechanism coordinating the production of the long-range weapon, HSAF and the proposed contact-dependent killing device, type VI secretion system. We also overview the regulatory mechanisms of HSAF production involving specific transcription factors and the bacterial second messenger c-di-GMP.
Collapse
Affiliation(s)
- Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Kangwen Xu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
14
|
Fu Y, Yu Z, Zhu L, Li Z, Yin W, Shang X, Chou SH, Tan Q, He J. The Multiple Regulatory Relationship Between RNA-Chaperone Hfq and the Second Messenger c-di-GMP. Front Microbiol 2021; 12:689619. [PMID: 34335515 PMCID: PMC8323549 DOI: 10.3389/fmicb.2021.689619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.
Collapse
Affiliation(s)
- Yang Fu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Shang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Xu K, Shen D, Yang N, Chou S, Gomelsky M, Qian G. Coordinated control of the type IV pili and c-di-GMP-dependent antifungal antibiotic production in Lysobacter by the response regulator PilR. MOLECULAR PLANT PATHOLOGY 2021; 22:602-617. [PMID: 33709522 PMCID: PMC8035640 DOI: 10.1111/mpp.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
In the soil gammaproteobacterium Lysobacter enzymogenes, a natural fungal predator, the response regulator PilR controls type IV pili (T4P)-mediated twitching motility as well as synthesis of the heat-stable antifungal factor (HSAF). Earlier we showed that PilR acts via the second messenger, c-di-GMP; however, the mechanism remained unknown. Here, we describe how PilR, c-di-GMP signalling, and HSAF synthesis are connected. We screened genes for putative diguanylate cyclases (c-di-GMP synthases) and found that PilR binds to the promoter region of lchD and down-regulates its transcription. The DNA-binding affinity of PilR, and therefore its repressor function, are enhanced by phosphorylation by its cognate histidine kinase, PilS. The lchD gene product is a diguanylate cyclase, and the decrease in LchD levels shifts the ratio of c-di-GMP-bound and c-di-GMP-free transcription factor Clp, a key activator of the HSAF biosynthesis operon expression. Furthermore, Clp directly interacts with LchD and enhances its diguanylate cyclase activity. Therefore, the PilS-PilR two-component system activates T4P-motility while simultaneously decreasing c-di-GMP levels and promoting HSAF production via the highly specific LchD-c-di-GMP-Clp pathway. Coordinated increase in motility and secretion of the "long-distance" antifungal weapon HSAF is expected to ensure safer grazing of L. enzymogenes on soil or plant surfaces, unimpeded by fungal competitors, or to facilitate bacterial preying on killed fungal cells. This study uncovered the mechanism of coregulated pili-based motility and production of an antifungal antibiotic in L. enzymogenes, showcased the expanded range of functions of the PilS-PilR system, and highlighted exquisite specificity in c-di-GMP-mediated circuits.
Collapse
Affiliation(s)
- Kangwen Xu
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Nianda Yang
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Shan‐Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Mark Gomelsky
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| |
Collapse
|
16
|
Yang M, Ren S, Shen D, Yang N, Wang B, Han S, Shen X, Chou SH, Qian G. An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium. PLoS Pathog 2020; 16:e1008967. [PMID: 33035267 PMCID: PMC7577485 DOI: 10.1371/journal.ppat.1008967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/21/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022] Open
Abstract
Soil bacteria possess multiple weapons to fend off microbial competitors. Currently, we poorly understand the factors guiding bacterial decisions about weapon systems deployment. In this study, we investigated how such decisions are made by the soil bacterium Lysobacter enzymogenes, used in antifungal plant protection. We found that weapons production is guided by environmental cues. In rich media, which likely mimic environments crowded with other microbes, L. enzymogenes produces a contact-dependent weapon, type six secretion system (T6SS). In nutrient-poor media, likely dominated by filamentous oomycetes and fungi, L. enzymogenes synthesizes and secretes a heat-stable antifungal factor (HSAF), a contact-independent weapon. Surprisingly, the T6SS inner tube protein Hcp is accumulated intracellularly even in nutrient-poor media, when the T6SS is not assembled. We found that Hcp interacts with the transcription factor Clp required for activating HSAF biosynthesis operon expression. Hcp protects Clp from binding to c-di-GMP, an intracellular second messenger inhibiting DNA binding. The increased concentration of c-di-GMP-free Clp thus leads to higher gene expression and HSAF production. Therefore, when the contact-dependent weapon, T6SS, is not in use, accumulation of one of its structural components, Hcp, serves as a signal to enhance production of the contact-independent weapon, HSAF. The uncovered environment-dependent and auto-regulatory mechanisms shed light on the processes governing deployment of various weapon systems in environmental bacteria. Soil bacteria face competition from diverse microbial species. To stay competitive, they deploy a variety of weapons. At present, we know little about factors influencing decisions about which weapons to produce at any given time, and about mechanisms through which these decisions are carried out. In this study, we show that in the soil bacterium, Lysobacter enzymogenes, synthesis of the contact-dependent weapon, known as type six secretion system (T6SS) occurs under different conditions, compared to those conductive to the production of the contact-independent weapon, toxin HSAF. Further, when T6SS is not assembled, one of its structural components, Hcp, coactivates HSAF operon expression and HSAF synthesis. This study reveals that decisions about contact-dependent and contact-independent weapon production in bacteria are governed by both environmental cues and intrinsic coordination mechanisms.
Collapse
Affiliation(s)
- Mingming Yang
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Shuangshuang Ren
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Nianda Yang
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Bingxin Wang
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Sen Han
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Xi Shen
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, ROC, Taiwan
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Xu K, Shen D, Han S, Chou SH, Qian G. A non-flagellated, predatory soil bacterium reprograms a chemosensory system to control antifungal antibiotic production via cyclic di-GMP signalling. Environ Microbiol 2020; 23:878-892. [PMID: 32779811 DOI: 10.1111/1462-2920.15191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 11/29/2022]
Abstract
Lysobacter enzymogenes is a non-flagellated, soil proteobacterium that secretes a diffusible antibiotic known as heat-stable antifungal factor (HSAF) to kill nearby fungi for food. The genome of the model strain OH11 encodes a homologous Wsp system, which is generally deployed by flagellated bacteria to achieve flagella-dependent outputs via a c-di-GMP-FleQ complex, in which c-di-GMP is a ubiquitous dinucleotide second messenger and FleQ is a transcription factor (TF). Here, we show that the Wsp system in the non-flagellated OH11 participates in a unique c-di-GMP-dependent signalling pathway and forms a WspR-CdgL binary complex to alter HSAF production, in which WspR and CdgL act as a c-di-GMP diguanylate cyclase (DGC) and a non-TF binding protein respectively. We found that the phosphorylation of WspR activates its DGC activity and enhances c-di-GMP production while inhibiting HSAF biosynthesis. The phosphorylation of WspR also plays a key role in weakening WspR-CdgL binding and HSAF generation. Interestingly, c-di-GMP binding to CdgL did not seem to induce the disassociation of the WspR-CdgL complex. These observations, along with our earlier findings, lead us to propose a model in which L. enzymogenes re-programs the Wsp system via c-di-GMP signalling to regulate HSAF biosynthesis for the benefit of ecological adaptation.
Collapse
Affiliation(s)
- Kangwen Xu
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Han
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Centre, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|